תוכן
תמונות
הוסף תמונה שלך
DSS Images Other Images
מאמרים קשורים
CO emission from discs around isolated HAeBe and Vega-excess stars We describe results from a survey for J = 3-2 12CO emissionfrom visible stars classified as having an infrared excess. The line isclearly detected in 21 objects, and significant molecular gas(>=10-3 Jupiter masses) is found to be common in targetswith infrared excesses >=0.01 (>=56 per cent of objects), but rarefor those with smaller excesses (~10 per cent of objects).A simple geometrical argument based on the infrared excess implies thatdisc opening angles are typically >=12° for objects with detectedCO; within this angle, the disc is optically thick to stellar radiationand shields the CO from photodissociation. Two or three CO discs have anunusually low infrared excess (<=0.01), implying the shielding discis physically very thin (<=1°).Around 50 per cent of the detected line profiles are double-peaked,while many of the rest have significantly broadened lines, attributed todiscs in Keplerian rotation. Simple model fits to the line profilesindicate outer radii in the range 30-300 au, larger than found throughfitting continuum SEDs, but similar to the sizes of debris discs aroundmain-sequence stars. As many as five have outer radii smaller than theSolar System (50 au), with a further four showing evidence of gas in thedisc at radii smaller than 20 au. The outer disc radius is independentof the stellar spectral type (from K through to B9), but there isevidence of a correlation between radius and total dust mass. Also themean disc size appears to decrease with time: discs around stars of age3-7 Myr have a mean radius ~210 au, whereas discs of age 7-20 Myr are afactor of three smaller. This shows that a significant mass of gas (atleast 2 M⊕) exists beyond the region of planetformation for up to ~7 Myr, and may remain for a further ~10Myr withinthis region.The only bona fide debris disc with detected CO is HD9672; this shows adouble-peaked CO profile and is the most compact gas disc observed, witha modelled outer radius of 17 au. In the case of HD141569, detailedmodelling of the line profile indicates gas may lie in two rings, withradii of 90 and 250 au, similar to the dust structure seen in scatteredlight and the mid-infrared. In both AB Aur and HD163296 we also findthat the sizes of the molecular disc and the dust scattering disc aresimilar; this suggests that the molecular gas and small dust grains areclosely co-located.
| Submillimetre observations and modelling of Vega-type stars We present new submillimetre observations of Vega-excess stars, andconsistent modelling for all known Vega-excess stars with submillimetredata. Our analysis uses dust grain models with realistic opticalproperties, with the aim of determining physical parameters of theunresolved discs from just their spectral energy distributions (SEDs).For the resolved targets, we find that different objects require verydifferent dust grain properties in order to fit the image data and SEDsimultaneously. Fomalhaut and Vega require solid dust grains, while HR4796 and HD 141569 can only be fitted using porous grains. The olderstars tend to have grains which are less porous than the younger stars,which may indicate that collisions in the discs have reprocessed theinitially fluffy grains into a more solid form. ɛ Eri appears to bedeficient in small dust grains compared with our best-fitting model.This may show that it is important to include all the factors that causethe size distribution to depart from a simple power law for grains closeto the radiation pressure blow-out limit. Alternatively, thisdiscrepancy may be due to some external influence on the disc (e.g. aplanet).When the model is applied to the unresolved targets, an estimate of thedisc size can be made. However, the large diversity in dust compositionfor the resolved discs means that we cannot make a reliable assumptionas to the composition of the grains in an unresolved disc, and there iscorresponding uncertainty in the disc size. In addition, the poor fitfor ɛ Eri shows that the model cannot always account for the SEDeven if the disc size is known. These two factors mean that it may notbe possible to determine the size of a disc without actually resolvingit.
| Optical, infrared and millimetre-wave properties of Vega-like systems - IV. Observations of a new sample of candidate Vega-like sources Photometric observations at optical and near-infrared wavelengths arepresented for members of a new sample of candidate Vega-like systems, ormain sequence stars with excess infrared emission due to circumstellardust. The observations are combined with IRAS fluxes to define thespectral energy distributions of the sources. Most of the sources showonly photospheric emission at near-IR wavelengths, indicating a lack ofhot (~1000K) dust. Mid-infrared spectra are presented for four sourcesfrom the sample. One of them, HD 150193, shows strong silicate emission,while another, HD 176363, was not detected. The spectra of two starsfrom our previous sample of Vega-like sources both show UIR-bandemission, attributed to hydrocarbon materials. Detailed comparisons ofthe optical and IRAS positions suggest that in some cases the IRASsource is not physically associated with the visible star. Alternativeassociations are suggested for several of these sources. Fractionalexcess luminosities are derived from the observed spectral energydistributions. The values found are comparable to those measuredpreviously for other Vega-like sources.
| Candidate Main-Sequence Stars with Debris Disks: A New Sample of Vega-like Sources Vega-like sources are main-sequence stars that exhibit IR fluxes inexcess of expectations for stellar photospheres, most likely due toreradiation of stellar emission intercepted by orbiting dust grains. Wehave identified a large sample of main-sequence stars with possibleexcess IR radiation by cross-correlating the Michigan Catalog ofTwo-dimensional Spectral Types for the HD Stars with the IRAS FaintSource Survey Catalog. Some 60 of these Vega-like sources were not foundduring previous surveys of the IRAS database, the majority of whichemployed the lower sensitivity Point Source Catalog. Here, we providedetails of our search strategy, together with a preliminary examinationof the full sample of Vega-like sources.
|
הכנס מאמר חדש
לינקים קשורים
הכנס לינק חדש
משמש של הקבוצה הבאה
|
תצפית ומידע אסטרומטרי
קבוצת-כוכבים: | מצפן |
התרוממות ימנית: | 09h25m00.28s |
סירוב: | -35°54'19.0" |
גודל גלוי: | 7.694 |
מרחק: | 106.952 פארסק |
תנועה נכונה: | -37.2 |
תנועה נכונה: | 14.8 |
B-T magnitude: | 7.956 |
V-T magnitude: | 7.716 |
קטלוגים וכינוים:
|