Contents
Images
Upload your image
DSS Images Other Images
Related articles
The discovery of 8.0-min radial velocity variations in the strongly magnetic cool Ap star HD154708, a new roAp star HD154708 has an extraordinarily strong magnetic field of 24.5kG. Using2.5h of high time resolution Ultraviolet and Visual Echelle Spectrograph(UVES) spectra we have discovered this star to be an roAp star with apulsation period of 8min. The radial velocity amplitudes in the rareearth element lines of NdII, NdIII and PrIII are unusually low -~60ms-1 - for an roAp star. Some evidence suggests that roApstars with stronger magnetic fields have lower pulsation amplitudes.Given the central role that the magnetic field plays in the obliquepulsator model of the roAp stars, an extensive study of the relation ofmagnetic field strength to pulsation amplitude is desirable.Based on observations collected at the European Southern Observatory,Paranal, Chile, as part of programme 075.D-0145.E-mail: dwkurtz@uclan.ac.uk
| Remarkable non-dipolar magnetic field of the Bp star HD 137509 The southern magnetic Bp star HD 137509 exhibits complex rotationalmodulation of the longitudinal field and other magnetic observables.Interpretation of this magnetic variability in the framework of thelow-order multipolar field models suggests a very strong quadrupolarcomponent to dominate the surface field topology of HD 137509. I haveexamined the high-quality VLT/UVES spectra of HD 137509 and discoveredresolved Zeeman split components in some of the spectral lines. Theinferred mean surface field modulus, < B >=29 kG, agrees with themultipolar model predictions. This confirms the presence of an extremelystrong non-dipolar magnetic field in HD 137509 and establishes this staras the object with the second-largest field among magnetic chemicallypeculiar stars.
| Evolutionary state of magnetic chemically peculiar stars Context: .The photospheres of about 5-10% of the upper main sequencestars exhibit remarkable chemical anomalies. Many of these chemicallypeculiar (CP) stars have a global magnetic field, the origin of which isstill a matter of debate. Aims: .We present a comprehensivestatistical investigation of the evolution of magnetic CP stars, aimedat providing constraints to the theories that deal with the origin ofthe magnetic field in these stars. Methods: .We have collectedfrom the literature data for 150 magnetic CP stars with accurateHipparcos parallaxes. We have retrieved from the ESO archive 142 FORS1observations of circularly polarized spectra for 100 stars. From thesespectra we have measured the mean longitudinal magnetic field, anddiscovered 48 new magnetic CP stars (five of which belonging to the rareclass of rapidly oscillating Ap stars). We have determined effectivetemperature and luminosity, then mass and position in the H-R diagramfor a final sample of 194 magnetic CP stars. Results: .We foundthat magnetic stars with M > 3 ~M_ȯ are homogeneouslydistributed along the main sequence. Instead, there are statisticalindications that lower mass stars (especially those with M ≤2~M_ȯ) tend to concentrate in the centre of the main sequence band.We show that this inhomogeneous age distribution cannot be attributed tothe effects of random errors and small number statistics. Our datasuggest also that the surface magnetic flux of CP stars increases withstellar age and mass, and correlates with the rotation period. For starswith M > 3~M_ȯ, rotation periods decrease with age in a wayconsistent with the conservation of the angular momentum, while for lessmassive magnetic CP stars an angular momentum loss cannot be ruledout. Conclusions: .The mechanism that originates and sustains themagnetic field in the upper main sequence stars may be different in CPstars of different mass.
| On the detection of chemically peculiar stars using Δa photometry We have summarized all Δ a measurements for galactic field stars(1474 objects) from the literature published over more than two decades.These measurements were, for the first time, compiled and homogeneouslyanalyzed. The Δ a intermediate band photometric system samples thedepth of the 5200 Å flux depression by comparing the flux at thecenter with the adjacent regions with bandwidths of 110 Å to 230Å. Because it was slightly modified over the last three decades,we checked for systematic trends for the different measurements butfound no correlations whatsoever. The Δ a photometric system ismost suitable to detecting magnetic chemically peculiar (CP) stars withhigh efficiency, but is also capable of detecting a small percentage ofnon-magnetic CP objects. Furthermore, the groups of (metal-weak)λ Bootis, as well as classical Be/shell stars, can besuccessfully investigated. In addition, we also analyzed the behaviourof supergiants (luminosity class I and II). On the basis of apparentnormal type objects, the correlation of the 3σ significance limitand the percentage of positive detection for all groups was derived. Wecompared the capability of the Δ a photometric system with theΔ (V1 - G) and Z indices of the Geneva 7-color system to detectpeculiar objects. Both photometric systems show the same efficiency forthe detection of CP and λ Bootis stars, while the indices in theGeneva system are even more efficient at detecting Be/shell objects. Onthe basis of this statistical analysis it is possible to derive theincidence of CP stars in galactic open cluster and extragalactic systemsincluding the former unknown bias of undetected objects. This isespecially important in order to make a sound statistical analysis ofthe correlation between the occurrence of these objects andastrophysical parameters such as the age, metallicity, and strength ofglobal, as well as local, magnetic fields.
| A catalog of stellar magnetic rotational phase curves Magnetized stars usually exhibit periodic variations of the effective(longitudinal) magnetic field Be caused by their rotation. Wepresent a catalog of magnetic rotational phase curves, Be vs.the rotational phase φ, and tables of their parameters for 136stars on the main sequence and above it. Phase curves were obtained bythe least squares fitting of sine wave or double wave functions to theavailable Be measurements, which were compiled from theexisting literature. Most of the catalogued objects are chemicallypeculiar A and B type stars (127 stars). For some stars we also improvedor determined periods of their rotation. We discuss the distribution ofparameters describing magnetic rotational phase curves in our sample.All tables and Appendix A are only available in electronic form athttp://www.edpsciences.org
| Astral magnetic fields-as observed in starforming nurseries, in stars, and in the Solar system ``Cherchez le champ magnétique'' is trendy in astronomy. Themagnetic field takes the hourglass shape in gravitationally contractingyoung stellar objects, helically wraps up the jets of protostars, guidesparticles in stellar coronae, explodes in stellar flares, causes unrestin pulsar quakes and creates planetary aurorae. In stars and pulsars,dipolar dynamo magnetic fields play a dominant rôle in the gasdynamics. In planetary disks, the field is toroidal or archimedeanspiral. Remanent magnetism is found in meteorites and asteroids. Theastral magnetic fields can reach 1018 G in magnetars,dwarfing anything we can do on Earth in stable conditions(107 G) or in pulsed conditions (1010 G).Magnetism plays a physical rôle in starforming clouds and itsconcomittent structures, from stellar nurseries to protostars, down toplanets and asteroids. Starting with star-forming clouds (~10 pc=32light-years=31×1016 m), this reviews coversprotostellar systems (~1 cpc), circumstellar space (~1 mpc), masers,interplanetary space (~1 μpc), pulsars, stars, planets (~1 npc),asteroids (~30 km; ~1 ppc), and meteorites (~0.3 m; ~10 apc).
| Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org
| A statistical analysis of the magnetic structure of CP stars We present the results of a statistical study of the magnetic structureof upper main sequence chemically peculiar stars. We have modelled asample of 34 stars, assuming that the magnetic morphology is describedby the superposition of a dipole and a quadrupole field, arbitrarilyoriented. In order to interpret the modelling results, we haveintroduced a novel set of angles that provides one with a convenient wayto represent the mutual orientation of the quadrupolar component, thedipolar component, and the rotation axis. Some of our results aresimilar to what has already been found in previous studies, e.g., thatthe inclination of the dipole axis to the rotation axis is usually largefor short-period stars and small for long-period ones - see Landstreet& Mathys (\cite{Landstreet2000}). We also found that forshort-period stars (approximately P<10 days) the plane containing thetwo unit vectors that characterise the quadrupole is almost coincidentwith the plane containing the stellar rotation axis and the dipole axis.Long-period stars seem to be preferentially characterised by aquadrupole orientation such that the planes just mentioned areperpendicular. There is also some loose indication of a continuoustransition between the two classes of stars with increasing rotationalperiod.
| Magnetic AP Stars in the Hertzsprung-Russell Diagram The evolutionary state of magnetic Ap stars is rediscussed using therecently released Hipparcos data. The distribution of the magnetic Apstars of mass below 3 Msolar in the H-R diagram differs fromthat of the normal stars in the same temperature range at a high levelof significance. Magnetic stars are concentrated toward the center ofthe main-sequence band. This is shown in two forms of the H-R diagram:one where logL is plotted against logTeff and a version moredirectly tied to the observed quantities, showing the astrometry-basedluminosity (Arenou & Luri) against the (B2-G)0 index ofGeneva photometry. In particular, it is found that magnetic fieldsappear only in stars that have already completed at least approximately30% of their main-sequence lifetime. No clear picture emerges as to thepossible evolution of the magnetic field across the main sequence. Hintsof some (loose) relations between magnetic field strength and otherstellar parameters are found: stars with shorter periods tend to havestronger fields, as do higher temperature and higher mass stars. Amarginal trend of the magnetic flux to be lower in more slowly rotatingstars may possibly be seen as suggesting a dynamo origin for the field.No correlation between the rotation period and the fraction of themain-sequence lifetime completed is observed, indicating that the slowrotation in these stars must already have been achieved before theybecame observably magnetic. Based on data from the ESA Hipparcossatellite and on observations collected at the European SouthernObservatory (La Silla, Chile; ESO programs Nos. 43.7-004, 44.7-012,49.7-030, 50.7-067, 51.7-041, 52.7-063, 53.7-028, 54.E-0416, and55.E-0751), at the Observatoire de Haute-Provence (Saint-Michell'Observatoire, France), at Kitt Peak National Observatory, and at theCanada-France-Hawaii Telescope.
| Hβ photometry of southern CP2 stars: is the uvbybeta luminosity calibration also valid for peculiar stars? We present Hβ photometry of 233 southern CP2 stars (covering themagnetic Ap stars according to the definition by Preston 1974) brighterthan V < 8.5 mag from the list of Bidelman & MacConnell (1973).Absolute magnitudes derived from this photometry together with alreadyexisting uvby photometry is confronted with Hipparcos results availablefor a common subset of 152 stars. In order to compare peculiar withnormal stars, we identified a sample of 1147 normal B to F-type starsusing their published uvbybeta and Hipparcos data. For our analysis wedivide both samples into three temperature as well as two Hipparcosparallax accuracy groups. The error distribution of both samples provedto be statistically comparable. As a result the absolute magnitudes forthe B-type CP2 stars show up to be significantly too bright by anaverage of 0.5 mag using the actual photometric calibration. On theother hand, the photometric absolute magnitudes for cool A to F-type CP2stars are up to three magnitudes fainter as compared to Hipparcos. Basedon observations at ESO-La Silla and with the Hipparcos satellite
| Fractionated stellar wind and the H/He abundance anomalies in BP stars Radiatively driven winds occur in all main sequence stars (Babel\cite{Bab1}, \cite{Bab2}). However, due to the weak coupling between thephoton absorbing metals and the inert elements H and He, the wind in thelow temperature domain is fractionated: He decouples from the wind atT_eff < 25 000 K, and below 17 000 K even H. The decoupled elementsfall back to the surface of the star thus creating overabundances andabundance stratifications. These anomalies, however, become manifestonly if atmospheric turbulence is suppressed (say by magnetic fields).In order to prove the validity of the described scenario, all B_p starsfor which reliable fundamental parameters exist, are discussed on thebasis of the (augmented) (g, T_eff)-diagram of Babel (\cite{Bab2}). Itis shown that the fractionation process is able to explain the observedtemperature sequence of He-rich and He-poor stars, additionally toclassical diffusion processes. A necessary condition is that a magneticfield is present. This explains why only a fraction of B stars exhibitsH/He anomalies. While classical diffusion operates in the quiet zones(no wind) of a star, fractionation takes place above the wind bases.
| Modelling of magnetic fields of CP stars. II. Analysis of longitudinal field, crossover, and quadratic field observations In recent years, the introduction and systematic application of newdiagnostic techniques has enormously increased the opportunities toinvestigate magnetic fields of chemically peculiar (CP) stars. Toapproach the problem of modelling these fields, in previous papers weset up a theory aimed at describing the magnetic configuration due tothe superposition of a dipole with an arbitrary quadrupole. The presentwork is a first application of this theory to spectro-polarimetricobservations of Stokes I and V. We have attempted to model nine magneticCP stars by analysing their curves of longitudinal field, crossover andquadratic field. We found that the classical dipolar model is adequatein only one case, while in six cases it should definitely be ruled out.For two stars a specific dipole plus quadrupole model has beenrecovered.
| On the HIPPARCOS photometry of chemically peculiar B, A, and F stars The Hipparcos photometry of the Chemically Peculiar main sequence B, A,and F stars is examined for variability. Some non-magnetic CP stars,Mercury-Manganese and metallic-line stars, which according to canonicalwisdom should not be variable, may be variable and are identified forfurther study. Some potentially important magnetic CP stars are noted.Tables 1, 2, and 3 are available only in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Modelling of magnetic fields of CP stars. I. A diagnostic method for dipole and quadrupole fields from Stokes I and V observations This paper is the first of a series aimed at developing and applying anew modelling technique for magnetic fields of chemically peculiar (CP)stars. Newly introduced observational techniques provided us evidencethat the ``oblique rotator model'' with a simple dipolar field is notsufficient to describe the magnetic morphology of CP stars, and that theproblem of inverting data must be approached within a more sophisticatedframework. In this paper we consider the configuration produced by thesuperposition of a dipole and a quadrupole, and we study in detail thebehaviour of some observational quantities related to the magneticfield, i.e. the ``mean longitudinal field'', the ``crossover'' and the``mean square field'', which are obtained from Stokes I and Vobservations. We illustrate the diagnostic content of the combinedanalysis of these three kinds of measurement, and we discuss someintrinsic limitations of the method. We present an algorithm forinverting the data, which has been tested against numerical simulations.We examine the possibility of recovering the stellar magneticconfiguration from real measurements, by taking into account theproblems related to the observational errors.
| The HR-diagram from HIPPARCOS data. Absolute magnitudes and kinematics of BP - AP stars The HR-diagram of about 1000 Bp - Ap stars in the solar neighbourhoodhas been constructed using astrometric data from Hipparcos satellite aswell as photometric and radial velocity data. The LM method\cite{luri95,luri96} allows the use of proper motion and radial velocitydata in addition to the trigonometric parallaxes to obtain luminositycalibrations and improved distances estimates. Six types of Bp - Apstars have been examined: He-rich, He-weak, HgMn, Si, Si+ and SrCrEu.Most Bp - Ap stars lie on the main sequence occupying the whole width ofit (about 2 mag), just like normal stars in the same range of spectraltypes. Their kinematic behaviour is typical of thin disk stars youngerthan about 1 Gyr. A few stars found to be high above the galactic planeor to have a high velocity are briefly discussed. Based on data from theESA Hipparcos astrometry satellite and photometric data collected in theGeneva system at ESO, La Silla (Chile) and at Jungfraujoch andGornergrat Observatories (Switzerland). Tables 3 and 4 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| On the near infrared variability of chemically peculiar stars Some CP stars have recently been discovered by Catalano et al. to bevariable also in the near infrared, although with smaller amplitudesthan in the visible. Hence an observational campaign was started inwhich the infrared light variability of a number of CP2 and CP4 starshas been investigated at the ESO-La Silla Observatory in the bands J, H,and K. As a general result, infrared variations show the same behaviorin all three filters but amplitudes are smaller than in the visible.
| CP2 stars as viewed by the UVBY H_beta system The aim of this work is to study the capacity of the uvby H_βsystem for detecting the chemically peculiar (CP) stars based on theeffect that peculiar features in the flux distribution have on all theStromgren-Crawford indices. Our study focuses on the classical magneticpeculiar stars (CP2), though Am stars (CP1) are also included forcomparison with cool CP2 stars. Satisfactory results were obtained forhot CP2 stars: the definition of a new index p, which is a linearcombination of uvby H_β colours, allowed us to separate a highpercentage of hot CP2 stars from normal stars. According to this newindex, 60 new CP2 candidates are proposed. The working sample wasextracted from The General Catalogue of Ap and Am stars by \cite[Rensonet al. (1991)]{ren91}. Photometric observations to enlarge the sample ofCP2 stars with complete uvby H_β photometry were carried out. Theseobservations are also reported in the present paper. The new index p isalso used to correct the reddening of early CP2 stars computed as ifthey were normal stars. Tables 2, 3 and 7 are also available inelectronic form from CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
| The observed periods of AP and BP stars A catalogue of all the periods up to now proposed for the variations ofCP2, CP3, and CP4 stars is presented. The main identifiers (HD and HR),the proper name, the variable-star name, and the spectral type andpeculiarity are given for each star as far as the coordinates at 2000.0and the visual magnitude. The nature of the observed variations (light,spectrum, magnetic field, etc.) is presented in a codified way. Thecatalogue is arranged in three tables: the bulk of the data, i.e. thosereferring to CP2, CP3, and CP4 stars, are given in Table 1, while thedata concerning He-strong stars are given in Table 2 and those foreclipsing or ellipsoidal variables are collected in Table 3. Notes arealso provided at the end of each table, mainly about duplicities. Thecatalogue contains data on 364 CP stars and is updated to 1996, October31. This research has made use of the SIMBAD database, operated at CDS,Strasbourg, France.
| Spectropolarimetry of magnetic stars. VI. Longitudinal field, crossover and quadratic field: New measurements New determinations of the mean longitudinal magnetic field, of thecrossover, and of the mean quadratic magnetic field of Ap stars arepresented. They are based on spectra recorded simultaneously in bothcircular polarizations at ESO with the CASPEC spectrograph fed by the3.6 m telescope. This paper discusses 95 observations of 44 stars. Amajor result of this study is the discovery that HD 137509 has apredominantly quadrupolar magnetic field, a strucuture previously foundin only a couple of stars. Improvement or revision of the determinationof the rotation period has been achieved for 3 stars. The stars studiedin this work include 14 rapidly oscillating Ap stars (for 6 of which noprevious attempt to detect a magnetic field had ever been made) and 21Ap stars with spectral lines resolved into their magnetically splitcomponents when observed at high enough dispersion in unpolarized light(for 9 of these stars, no determination of the longitudinal field hadbeen performed before). The observations discussed in this paper havebeen performed between 1989 and 1994, a period during which CASPEC andits Zeeman analyzer have progressively undergone various configurationchanges. The results reported here demonstrate that the polarimetricperformance of the instrument has remained unaltered through thesemodifications. Thanks to the latter, the achieved resolving power wasincreased, which resulted in improved magnetic measurement accuracies.Based on observations collected at the European Southern Observatory (LaSilla, Chile; ESO programmes Nos. 47.7-045 and 49.7-029).
| The variations of the BP star HD 137509. A refined value P=(4.4916+/-0.0002) d is derived for the rotation periodof the Bp star HD 137509, from the simultaneous consideration ofphotometric data recorded in the Geneva system and of measurements ofthe mean longitudinal magnetic field and of the crossover. Thevariations of the magnetic field (one of the most intense fields knownin an Ap or Bp star) show the signature of a strong quadrupolarcomponent. This remarkable property is reflected in the brightness andline equivalent width variations.
| Discovery of a very large magnetic field in the AP star HD 47103. In the course of a systematic survey of surface magnetic fields of coolAp stars with correlation procedures, we have discovered a 17.5kG fieldin the 9th magnitude Ap SrEu star HD 47103. This star has a smallprojected rotational velocity vsini=4.4km/s only and the Zeeman patternis resolved for many lines and in particular in the correlation peaks.Its effective temperature, estimated from the profile of the Balmerlines, is 8900+/-300K. It has one of the largest field known among allSr-type Ap stars. Most of the previously detected stars, with fieldslarger or similar to HD 47103, are hotter than this object. The fieldwas estimated by a new technique which requires moderatesignal-to-noise. This method is reliable in that it gives very goodagreement with the method of Mathys (1990).
| Spectropolarimetry of magnetic stars. V. The mean quadratic magnetic field. Systematic determinations of the mean quadratic magnetic field of Apstars have been performed for the first time. The mean quadraticmagnetic field (or, in short, the quadratic field) is the square root ofthe sum of the mean square magnetic field modulus and of the mean squarelongitudinal magnetic field. The latter are averages over the visiblestellar disk of the square of, respectively, the modulus of the magneticfield and its component along the line of sight. These averages areweighted by the local emergent line intensities. The quadratic field isdiagnosed from the study of the magnetic broadening of the stellarspectral lines as observed in unpolarized light, through thecharacterization of the widths of the lines by the second-order momentsof their profiles (in the Stokes parameter I) about their centre. Thetheoretical basis of the interpretation of these moments in terms ofmagnetic field and the strategy followed in the analysis are presented.It is shown that this analysis yields, as a by-product, the projectedequatorial velocity v_e_sini of the studied stars. Observations of asample of 29 stars are analyzed. For 22 of them, meaningful values orupper limits of the quadratic field can be determined. The lower limitof detection of the quadratic fields, set by the spectral resolution ofthe observations, is of the order of 5 kG. The observed quadratic fieldsrange from this value up to 37 kG, in the star HD 137509. The magneticfield of this star is likely the second strongest known field in Apstars. Quadratic field values derived for stars where resolvedmagnetically split lines are observed in higher-dispersion spectra areconsistent with the values of the mean field modulus measured in thosestars from the line splitting. For the stars of the sample repeatedlyobserved through their rotation cycle, the variations of the quadraticfield are well represented by a cosine with the rotation frequency ofthe star, or by the superposition of such a cosine and of a cosine withtwice that frequency. However, it appears that it is essential to have alarge number of observations distributed sufficiently uniformly andsufficiently densely over the rotation phases to determine unambiguouslythe shape of the variations. The extrema of the quadratic field tend tooccur at phases close to those of the extrema of the longitudinal field,but in some stars, the two quantities definitely vary out of phase. Theratio between the maximum and the minimum of the quadratic field isalways smaller than 1.7.
| Spectropolarimetry of magnetic stars. IV. The crossover effect. This paper is devoted to the study of the crossover effect in magneticAp stars. It is shown that this effect can be measured by the secondorder moment about their centre of the profiles of spectral linesrecorded in the Stokes parameter V. The interpretation of thesemeasurements in terms of magnetic field is developed. It is shown thatone can derive from them a quantity called the mean asymmetry of thelongitudinal magnetic field, which is the first moment of the componentof the magnetic field along the line of sight, about the plane definedby the line of sight and the stellar rotation axis. The consistency ofthe determination of this quantity with that of the mean longitudinalmagnetic field from measurements of wavelength shifts of lines betweenright and left circular polarization is demonstrated. This technique ofanalysis is applied to observations of a sample of 29 stars, among which10 have a detectable crossover effect. For 8 of them, the availableobservational data allow the study of the variations of the asymmetry ofthe longitudinal field with rotation phase. In most cases, thisvariation is sinusoidal and essentially symmetric about 0, and it occursin quadrature with the variation of the mean longitudinal field. A morecomplex behaviour is definitely observed in HD 147010 and HD 175362,where the variation of the asymmetry of the longitudinal field is betterrepresented by the superposition of two sinusoids, one with the rotationfrequency of the star, and the other with twice that frequency.
| Spectropolarimetry of magnetic stars. III. Measurement uncertainties. The estimation of the uncertainties affecting the determination ofvarious parameters characterizing spectral line profiles recorded inStokes I and V that are used in the diagnosis of stellar magnetic fieldsthrough the moment technique is described. Simple statisticalconsiderations are presented, to demonstrate that the errors areproperly assessed and to illustrate how their evaluation can beexploited to derive information about the physical properties of thestudied stars. It is shown that taking these uncertainties properly intoaccount allows one to achieve better determination of the meanlongitudinal magnetic field. Improved values of the latter are derivedfor observations already analysed in earlier work. The approach sketchedin this paper is intended as a basis for future studies of magneticfields of Ap stars.
| Variation of oxygen lines in magnetic AP stars The red lines of the O I multiplet at lambda 7773 A are observed at highresolution and their rotational variation is recorded for a sample ofnine magnetic Ap stars. These lines are found to be weaker than fornormal Ap stars. The irregular distribution of oxygen on the stellarsurface is connected to the magnetic geometry for the stars HD 25823 (41Tau), HD 74521 (49 Cnc), HD 112185 (epsilon UMa), HD 112413(alpha2 CVn), and HD 125248 (CS Vir). For four of thesestars, it is clearly established that oxygen is concentrated around amagnetic polar region. The interpretation of the observed trends addsnew constraints to the theory of radiative diffusion of oxygen in Apstars.
| A new list of effective temperatures of chemically peculiar stars. II. Not Available
| The light variations of some southern CP2 stars Nine southern chemically peculiar stars brighter than the seventh visualmagnitude have been observed in the uvby system. All the stars but HD148199 are previously known light variables, although their periods werenot accurate enough to phase together different kinds of observationscarried out several years apart. Here we present more refined values ofthe period for the stars: HD 74521, HD 90044, HD 119419, HD 125630, HD137509, HD 147010, HD 166469, and HD 170397. The star HD 148199,formerly considered constant in light, has been found to be variable inlight, too, with the same period as the magnetic field.
| Third supplement to the catalogue of observed periods of AP stars New data on the periods of Ap stars with references are presented.Twelve further stars are introduced for which a periodic variability hasrecently been discovered or not reported in previous issues of thiscatalog. For many stars also present in previous issues of the catalognew determinations of the periods are given. Recently attributedvariable star names are also quoted.
| A study of magnetic fields in AP SI and He weak stars A survey of 44 Ap and Bp Si and He-weak stars for the presence ofdetectable longitudinal magnetic fields (Be) is reported. Fields havebeen detected in about half of the sample, with typical standard errorsin the range of 100-400 G. In 11 stars, fields have been detected forthe first time. For most of the stars with detected fields, thevariation of Be with rotational phase has been determined at leastapproximately. In a number of cases the phase relationship withphotometric or spectroscopic variations have also been established.Several of the newly detected fields are relatively large, with rmsvalues between 1 and 4 kG, and thus may be especially suitable fordetailed mapping and modelling. A particularly interesting result ofthese observations is the identification of at least four stars in whichextrema of the photometric or spectroscopic variations do not coincidewith the magnetic extrema, which implies that the distribution ofchemical elements over the stellar surface that leads to photometricvariations is definitely not symmetric about the magnetic axis of thestar.
| The 71st Name-List of Variable Stars Not Available
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Πτηνόν |
Right ascension: | 15h31m27.12s |
Declination: | -71°03'43.7" |
Apparent magnitude: | 6.886 |
Distance: | 249.377 parsecs |
Proper motion RA: | -15.5 |
Proper motion Dec: | -15.4 |
B-T magnitude: | 6.728 |
V-T magnitude: | 6.873 |
Catalogs and designations:
|