Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 106-1237-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

Beryllium, Oxygen, and Iron Abundances in Extremely Metal-Deficient Stars
The abundance of beryllium in the oldest, most metal-poor stars acts asa probe of early star formation and Galactic chemical evolution. We haveanalyzed high-resolution, high signal-to-noise ratio Keck/HIRES spectraof 24 stars with [Fe/H] from -2.3 to -3.5 in order todetermine the history of Be abundance and explore the possibility of aBe plateau. We have determined stellar parameters of our samplespectroscopically, using equivalent widths of Fe I, Ti I, and Ti IIlines. We have determined O abundances from three OH features whichoccur in the same spectral region; this region is relatively uncrowdedand has a well determined continuum in these very/extremely metal-poorstars. We have supplemented this sample with reanalyzed spectra of 25stars from previous observations so that our total sample ranges in[Fe/H] from -0.5 to -3.5. Our results indicate that therelationship between Be and [Fe/H] continues to lower metallicities witha slope of 0.92 ± 0.04. Although there is no indication of aplateau with constant Be abundance, the four lowest metallicity stars(below [Fe/H] of -3.0) do show a Be enhancement relative to Fe atthe 1σ level. A single relationship between Be and [O/H] has aslope of 1.21 ± 0.08, but there is also a good fit with twoslopes: 1.59 above [O/H] = -1.6 and 0.74 for stars with [O/H]below -1.6. This change in slope could result from a change in thedominant production mechanism for Be. In the era of the formation of themore metal-poor stars, Be would be formed by acceleration of CNO atomsin the vicinity of SN II and in later times by high-energy cosmic-raysbombarding CNO in the ambient interstellar gas. We find an excellentcorrelation between [Fe/H] and [O/H] and show that [O/Fe] is near +1.0at [Fe/H] = -3.5 declining to 0 at [Fe/H] = 0.

The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars
Aims: We present new measurements of the abundances of carbon and oxygenderived from high-excitation C i and O i absorption lines in metal-poorhalo stars, with the aim of clarifying the main sources of these twoelements in the early stages of the chemical enrichment of the Galaxy.Methods: We target 15 new stars compared to our previous study,with an emphasis on additional C/O determinations in the crucialmetallicity range -3 ⪉ [Fe/H]⪉ -2. The stellar effectivetemperatures were estimated from the profile of the Hβ line.Departures from local thermodynamic equilibrium were accounted for inthe line formation for both carbon and oxygen. The non-LTE effects arevery strong at the lowest metallicities but, contrary to what hassometimes been assumed in the past due to a simplified assessment, ofdifferent degrees for the two elements. In addition, for the 28 starswith [Fe/H] < -1 previously analysed, stellar parameters werere-derived and non-LTE corrections applied in the same fashion as forthe rest of our sample, giving consistent abundances for 43 halo starsin total. Results: The new observations and non-LTE calculationsstrengthen previous suggestions of an upturn in C/O towards lowermetallicity (particularly for [O/H] ⪉ -2). The C/O values derivedfor these very metal-poor stars are, however, sensitive to excitationvia the still poorly quantified inelastic H collisions. While these donot significantly affect the non-LTE results for C i, they greatlymodify the O i outcome. Adopting the H collisional cross-sectionsestimated from the classical Drawin formula leads to [C/O] ≈ 0 at[O/H] ≈ -3. To remove the upturn in C/O, near-LTE formation for O ilines would be required, which could only happen if the H collisionalefficiency with the Drawin recipe is underestimated by factors of up toseveral tens of times, a possibility which we consider unlikely. Conclusions: The high C/O values derived at the lowest metallicitiesmay be revealing the fingerprints of Population III stars or may signalrotationally-aided nucleosynthesis in more normal Population II stars.Based on data collected with the European Southern Observatory's VeryLarge Telescope (VLT) at the Paranal, Chile (programmes No. 67.D-0106and 73.D-0024) and with the Magellan Telescope at Las CampanasObservatory, Chile.

Lithium abundances of halo dwarfs based on excitation temperature. I. Local thermodynamic equilibrium
Context: The discovery of the Spite plateau in the abundances of7Li for metal-poor stars led to the determination of anobservationally deduced primordial lithium abundance. However, after thesuccess of the Wilkinson Microwave Anisotropy Probe (WMAP) indetermining the baryon density, Ω_Bh2, there was adiscrepancy between observationally determined and theoreticallydetermined abundances in the case of 7Li. One of the mostimportant uncertain factors in the calculation of the stellar7Li abundance is the effective temperature, T_eff. Aims: We use sixteen metal-poor halo dwarfs to calculate new T_effvalues using the excitation energy method. With this temperature scalewe then calculate new Li abundances for this group of stars in anattempt to resolve the 7Li discrepancy. Methods: Usinghigh signal-to-noise (S/N ≈ 100) spectra of 16 metal-poor halodwarfs, obtained with the UCLES spectrograph on the AAT, measurements ofequivalent widths from a set of unblended Fe I lines are made. Theseequivalent widths are then used to calculate new T_eff values with theuse of the single line radiative transfer program WIDTH6, where we haveconstrained the gravity using either theoretical isochrones or theHipparcos parallax, rather than the ionization balance. The lithiumabundances of the stars are calculated with these temperatures. Results: The physical parameters are derived for the 16 programmestars, and two standards. These include T_eff, log g, [Fe/H],microturbulence and 7Li abundances. A comparison between thetemperature scale of this work and those adopted by others has beenundertaken. We find good consistency with the temperatures derived fromthe Hα line by Asplund et al. (2006, ApJ, 644, 229), but not withthe hotter scale of Meléndez & Ramírez (2004, ApJ,615, L33). We also present results of the investigation into whether anytrends between 7Li and metallicity or temperature are presentin these metal-poor stars.Appendix A is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/601

Detailed Abundances for 28 Metal-poor Stars: Stellar Relics in the Milky Way
We present the results of an abundance analysis for a sample of starswith -4<[Fe/H]<-2. The data were obtained with the HIRESspectrograph at Keck Observatory. The set includes 28 stars, witheffective temperature ranging from 4800 to 6600 K. For 13 stars with[Fe/H]<-2.6, including nine with [Fe/H]<-3.0 and one with[Fe/H]=-4.0, these are the first reported detailed abundances. For themost metal-poor star in our sample, CS 30336-049, we measure anabundance pattern that is very similar to stars in the range[Fe/H]~-3.5, including a normal C+N abundance. We also find that it hasvery low but measurable Sr and Ba, indicating some neutron-captureactivity even at this low of a metallicity. We explore this issuefurther by examining other very neutron capture-deficient stars and findthat, at the lowest levels, [Ba/Sr] exhibits the ratio of the mainr-process. We also report on a new r-process-enhanced star, CS31078-018. This star has [Fe/H]=-2.85, [Eu/Fe]=1.23, and [Ba/Eu]=-0.51.CS 31078-018 exhibits an ``actinide boost,'' i.e., much higher [Th/Eu]than expected and at a similar level to CS 31082-001. Our spectra allowus to further constrain the abundance scatter at low metallicities,which we then use to fit to the zero-metallicity Type II supernovayields of Heger & Woosley (2008). We find that supernovae withprogenitor masses between 10 and 20 Msolar provide the bestmatches to our abundances.The data presented herein were obtained at the W. M. Keck Observatory,which is operated as a scientific partnership among the CaliforniaInstitute of Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.This publication makes use of data products from the Two Micron All SkySurvey, which is a joint project of the University of Massachusetts andthe Infrared Processing and Analysis Center/California Institute ofTechnology, funded by the National Aeronautics and Space Administrationand the National Science Foundation.

Speckle interferometry of metal-poor stars in the solar neighborhood. I
We report the results of speckle-interferometric observations of 109high proper-motion metalpoor stars made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences. Weresolve eight objects—G102-20, G191-55, BD+19° 1185A, G89-14,G87-45, G87-47, G111-38, and G114-25—into individual componentsand we are the first to astrometrically resolve seven of these stars.New resolved systems included two triple (G111-38, G87-47) and onequadruple (G89-14) star. The ratio ofsingle-to-binary-to-triple-to-quadruple systems among the stars of oursample is equal to 71:28:6:1.

Lithium abundances in metal-poor stars
Aims.Lithium abundances for 19 metal-poor stars are determined usinghigh-resolution spectroscopy. The abundances of stars on the lithiumplateau are discussed. Methods: All abundance results are derived fromNLTE statistical equilibrium calculations and spectrum synthesismethods. Results: In agreement with previous analyses it is found thatexcitation and de-excitation due to hydrogen collisions are negligiblefor the lithium line formation process, while charge transfer reactionsare an important source of thermalization. However, the resulting NLTEeffects on the determination of lithium abundances for metal-poor starsare negligible (<0.06 dex). Conclusions: .The mean lithium abundancefor stars on the lithium plateau determined from NLTE analyses is A(Li)~ 2.26, while it is 2.21 dex when charge transfer reactions areincluded. The latter result enhances the discrepancy between theobserved lithium abundances and the primordial lithium abundance asinferred by the WMAP analysis of the cosmic microwave background. Thisdiscrepancy may be explained by metal diffusion.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Lithium Isotopic Abundances in Metal-poor Halo Stars
Very high quality spectra of 24 metal-poor halo dwarfs and subgiantshave been acquired with ESO's VLT/UVES for the purpose of determining Liisotopic abundances. The derived one-dimensional, non-LTE 7Li abundances from the Li I 670.8 nm line reveal a pronounceddependence on metallicity but with negligible scatter around this trend.Very good agreement is found between the abundances from the Li I 670.8nm line and the Li I 610.4 nm line. The estimated primordial 7Li abundance is7Li/H=(1.1-1.5)×10-10, which is a factor of3-4 lower than predicted from standard big bang nucleosynthesis with thebaryon density inferred from the cosmic microwave background.Interestingly, 6Li is detected in 9 of our 24 stars at the>=2 σ significance level. Our observations suggest theexistence of a 6Li plateau at the level oflogε6Li~0.8 however, taking into accountpredictions for 6Li destruction during the pre-main-sequenceevolution tilts the plateau such that the 6Li abundancesapparently increase with metallicity. Our most noteworthy result is thedetection of 6Li in the very metal-poor star LP 815-43. Sucha high 6Li abundance during these early Galactic epochs isvery difficult to achieve by Galactic cosmic-ray spallation andα-fusion reactions. It is concluded that both Li isotopes have apre-Galactic origin. Possible 6Li production channels includeprotogalactic shocks and late-decaying or annihilating supersymmetricparticles during the era of big bang nucleosynthesis. The presence of6Li limits the possible degree of stellar 7Lidepletion and thus sharpens the discrepancy with standard big bangnucleosynthesis.Based on observations collected at the European Southern Observatory,Paranal, Chile (observing programs 65.L-0131, 68.D-0091, and273.D-5043).

Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars
Aims.Parameters for 55 nearby metal-poor stars are determined usinghigh-resolution spectroscopy. Together with similar data taken from arecent analysis, they are used to show trends of their Galacticevolution with stellar [Fe/H] or [Mg/H] abundances. The separation ofabundance ratios between disk and halo stars is used as a basiccriterion for population membership. Methods.After carefulselection of a clean subsample free of suspected or known binaries andpeculiar stars, abundances of Mg, Na and Al are based on NLTE kineticequilibrium calculations applied to spectrum synthesis methods. Results.The relation between [Na/Mg] and [Fe/H] is a continuousenrichment through all three Galactic populations spanning a range ofvalues between a metal-poor plateau at [ Na/Mg] = -0.7 and solar values.[Al/Mg] displays a step-like difference between stars of the Galactichalo with overline[Al/Mg] ˜ -0.45 and the two disk populations withoverline[Al/Mg] ˜ +0.10. [Al/Mg] ratios, together with the [Mg/Fe]ratios, asymmetric drift velocities V, and stellar evolutionary ages,make possible the individual discrimination between stars of the thickdisk and the halo. At present, this evidence is limited by the smallnumber of stars, and by the theoretical and empirical uncertainties ofstellar age determinations, but it achieves a high significance. Conclusions.While the stellar sample is not complete with respect tospace volume, the resulting abundances indicate the necessity to revisecurrent models of chemical evolution to allow for an adequate productionof Al in early stellar generations.

NLTE Strontium and Barium in Metal-poor Red Giant Stars
We present atmospheric models of red giant stars of variousmetallicities, including extremely metal poor (XMP; [Fe/H]<-3.5)models, with many chemical species, including, significantly, the firsttwo ionization stages of strontium (Sr) and barium (Ba), treated innon-local thermodynamic equilibrium (NLTE) with various degrees ofrealism. We conclude that (1) for all lines that are useful Sr and Baabundance diagnostics, the magnitude and sense of the computed NLTEeffect on the predicted line strength is metallicity dependent, (2) theindirect NLTE effect of overlap between Ba and Sr transitions andtransitions of other species that are also treated in NLTE nonnegligiblyenhances NLTE abundance corrections for some lines, (3) the indirectNLTE effect of NLTE opacity of other species on the equilibriumstructure of the atmospheric model is not significant, (4) the computedNLTE line strengths differ negligibly if collisional b-b and b-f ratesare an order of magnitude smaller or larger than those calculated withstandard analytic formulae, and (5) the effect of NLTE on the resonanceline of Ba II at 4554.03 Å is independent of whether that line istreated with hyperfine splitting. As a result, the derivation ofabundances of Ba and Sr for metal-poor red giant stars with LTE modelingthat are in the literature should be treated with caution.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

uvby-β photometry of high-velocity and metal-poor stars. XI. Ages of halo and old disk stars
New uvby-β data are provided for 442 high-velocity and metal-poorstars; 90 of these stars have been observed previously by us, and 352are new. When combined with our previous two photometric catalogues, thedata base is now made up of 1533 high-velocity and metal-poor stars, allwith uvby-β photometry and complete kinematic data, such as propermotions and radial velocities taken from the literature. Hipparcos, plusa new photometric calibration for Mv also based on theHipparcos parallaxes, provide distances for nearly all of these stars;our previous photometric calibrations give values for E(b-y) and [Fe/H].The [Fe/H], V(rot) diagram allows us to separate these stars intodifferent Galactic stellar population groups, such as old-thin-disk,thick-disk, and halo. The X histogram, where X is our stellar-populationdiscriminator combining V(rot) and [Fe/H], and contour plots for the[Fe/H], V(rot) diagram both indicate two probable components to thethick disk. These population groups and Galactic components are studiedin the (b-y)0, Mv diagram, compared to theisochrones of Bergbusch & VandenBerg (2001, ApJ, 556, 322), toderive stellar ages. The two thick-disk groups have the meancharacteristics: ([Fe/H], V(rot), Age, σW') ≈ (-0.7dex, 120 km s-1, 12.5 Gyr, 62.0 km s-1), and≈(-0.4, 160, 10.0, 45.8). The seven most metal-poor halo groups,-2.31 ≤ [Fe/H] ≤ -1.31, show a mean age of 13.0 ± 0.2(mean error) Gyr, giving a mean difference from the WMAP results for theage of the Universe of 0.7 ± 0.3 Gyr. These results for the agesand components of the thick disk and for the age of the Galactic halofield stars are discussed in terms of various models and ideas for theformation of galaxies and their stellar populations.

Lithium isotopic abundances in metal-poor stars: A problem for standard big bang nucleosynthesis?
Not Available

Beryllium in the Ultra-Lithium-deficient, Metal-Poor Halo Dwarf G186-26
The vast majority of low-metal halo dwarfs show a similar amount of Li;this has been attributed to the Li that was produced in the big bang.However, there are nine known halo stars with T>5900 K and[Fe/H]<-1.0 that are ultra-Li-deficient. We have looked for Be in thevery low metallicity star G186-26, at [Fe/H]=-2.71, which is one of theultra-Li-deficient stars. This star is also ultra-Be-deficient. Relativeto Be in the Li-normal stars at [Fe/H]=-2.7, G186-26 is down in Be bymore than 0.8 dex. Of two potential causes for the Li deficiency-masstransfer in a pre-blue straggler or extra rotationally induced mixing ina star that was initially a very rapid rotator-the absence of Be favorsthe blue straggler hypothesis, but the rotation model cannot be ruledout completely.Based on data obtained with the Subaru Telescope, which is operated bythe National Astronomical Observatory of Japan.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Implications of a New Temperature Scale for Halo Dwarfs on LiBeB and Chemical Evolution
Big bang nucleosynthesis (BBN) and the cosmic baryon density from cosmicmicrowave background anisotropies together predict a primordial7Li abundance a factor of 2-3 higher than that observed ingalactic halo dwarf stars. A recent analysis of 7Liobservations in halo stars, using significantly higher surfacetemperature for these stars, found a higher Li plateau abundance. Theseresults go a long way toward resolving the discrepancy with BBN. Here weexamine the implications of the higher surface temperatures on theabundances of Be and B that are thought to have been produced ingalactic cosmic-ray nucleosynthesis by spallation of CNO together withLi (produced in α+α collisions). While the Be abundance isnot overly sensitive to the surface temperature, the derived Babundances and more importantly the derived oxygen abundances are verytemperature-dependent. If the new temperature scale is correct, theimplied increased abundances of these elements pose a serious challengeto models of galactic cosmic-ray nucleosynthesis and galactic chemicalevolution.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Mg abundances in metal-poor halo stars as a tracer of early Galactic mixing
We present results of a detailed chemical analysis performed on 23main-sequence turnoff stars having -3.4 ≤ [Fe/H] ≤ -2.2, asample selected to be highly homogeneous in Teff and log(g).We investigate the efficiency of mixing in the early Galaxy by means ofthe [Mg/Fe] ratio, and find that all values lie within a total range of0.2 dex, with a standard deviation about the mean of 0.06 dex,consistent with measurement errors. This implies there is little or nointrinsic scatter in the early ISM, as suggested also by the most recentresults from high-quality VLT observations. These results are incontrast with inhomogeneous Galactic chemical evolution (iGCE) modelsadopting present supernova (SN) II yields, which predict a peak-to-peakscatter in [Mg/Fe] as high as 1 dex at very low metallicity, with acorresponding standard deviation of about 0.4 dex. We propose thatcooling and mixing timescales should be investigated in iGCE models toaccount for the apparent disagreement with present observations. Thecontrast between the constancy and small dispersion of [Mg/Fe] reportedhere and the quite different behaviour of [Ba/Fe] indicates, accordingto this interpretation, that Mg and Ba are predominantly synthesised indifferent progenitor mass ranges.Table \ref{gftable} is only available in electronic form athttp://www.edpsciences.org

Reappraising the Spite Lithium Plateau: Extremely Thin and Marginally Consistent with WMAP Data
The lithium abundance in 62 halo dwarfs is determined from accurateequivalent widths reported in the literature and an improved infraredflux method temperature scale. The Li abundance of 41 plateau stars(those with Teff>6000 K) is found to be independent oftemperature and metallicity, with a star-to-star scatter of only 0.06dex over a broad range of temperatures (6000K

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Cu and Zn in the early Galaxy
We present Cu and Zn abundances for 38 FGK stars, mostly dwarfs,spanning a metallicity range between solar and [Fe/H] = -3. Theabundances were obtained using Kurucz's local thermal equilibrium (LTE)model atmospheres and the near-UV lines of Cu I 3273.95 Å and Zn I3302.58 Å observed at high spectral resolution. The trend of[Cu/Fe] versus [Fe/H] is almost solar for [Fe/H] > -1 and thendecreases to a plateau <[Cu/Fe]> = -0.98 at [Fe/H] < -2.5,whereas the [Zn/Fe] trend is essentially solar for [Fe/H] > -2 andthen slightly increases at lower metallicities to an average value of<[Zn/Fe]> = +0.18. We compare our results with previous work onthese elements, and briefly discuss them in terms of nucleosynthesisprocesses. Predictions of halo chemical evolution fairly reproduce thetrends, especially the [Cu/Fe] plateau at very low metallicities, but toa lesser extent the higher [Zn/Fe] ratios at low metallicities,indicating possibly missing yields.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Boron Benchmarks for the Galactic Disk
Sixteen Population I solar-type dwarfs have been selected to ascertainthe baseline B abundance in the Galactic disk for a range of a factor of4 in metallicity: from [Fe/H] of -0.5 to +0.1. All the stars selectedare undepleted in Be, which ensures that they have also retained theirfull initial abundance of B. Evaluation of the trend of B with Feprovides a means to study the evolution of B in the Galactic disk. Weobserved 16 bright stars around the B I 2497 Å line, using theSTIS echelle spectrograph on HST. New observations of Li and Be in somestars were made, and previous abundance studies of Li and Be in thesestars were reevaluated using revised parameters and a modified spectralsynthesis code for consistency with the B measurements. Abundances of Bwere calculated by spectrum synthesis with the revised MOOG code, whichaccounts for the increased opacity in the UV due to metals; the LTE Babundances were then corrected for non-LTE effects. Four additionalstars with undepleted Be have HST B observations, which increase oursample to 20. For these disk stars there is a shallow slope for B versusFe and Be versus Fe, such that as Fe increases by a factor of 4, B andBe increase by 1.7 times. The slope for BLTE versus Fe is0.31+/-0.09, for BNLTE versus Fe 0.40+/-0.12, and for Beversus Fe 0.38+/-0.14. We have estimated the effect of additional UVopacity from Mg and find that an increase of 0.3 dex in Mg results in ahigher B abundances by 0.1 dex for all the disk stars. Individual starsare not consistently above (or below) the mean in both B and Be,implying that the star-to-star differences are not due to variations inthe elemental content of the ``natal'' clouds. We find that the trend ofB abundance with [Fe/H] is consistent with the general trend observed inhalo stars. If we connect the halo and disk stars, then an increase inthe Fe abundance by 103 is accompanied by increases of 100times in B and 550 times in Be. However, fitting two separate relationsfor the disk and the halo stars results in a somewhat steeper slope forBe for the halo stars (1.08+/-0.07) relative to the disk stars(0.38+/-0.14). This is the case for B also in LTE, with Bhalo(0.90+/-0.07) versus Bdisk (0.32+/-0.12). However, the NLTE Babundance increases more slowly for halo stars than the Be abundancedoes; since this is not predicted by light-element synthesis ordepletion, we suggest that a full NLTE analysis would be preferable tomaking the (small) corrections to the LTE abundances. Some of the lowestmetallicity stars are thought to have only upper limits on the Babundance; if that is the case, the NLTE B slope is steeper, nearing1.0. The abundance of B in the disk stars is observed to be a factor of~15+7-5 more than the abundance of Be in thesestars, a result consistent with the predictions of Galactic cosmic-ray(GCR) spallation, B/Be=15+/-5. The upper envelope for Li versus Feyields Li/B and Li/Be ratios that, when coupled with models andpredictions, indicate that 20%-45% of Li might be produced by GCRs.While there is no evidence to support the production of B by neutrinospallation, we cannot rule it out.Based on observations obtained with the NASA/ESA Hubble Space Telescope(HST) through the Space Telescope Science Institute, which is operatedby the Association of Universities for Research in Astronomy, Inc.,under NASA contract NAS5-26555.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Rotation Velocities of Red and Blue Field Horizontal-Branch Stars
We present measurements of the projected stellar rotation velocities(vsini) of a sample of 45 candidate field horizontal-branch (HB) starsspanning a wide range of effective temperatures, from red HB stars withTeff~=5000K to blue HB stars with Teff of 17,000K.Among the cooler blue HB stars (Teff=7500-11500 K), weconfirm prior studies showing that, although a majority of stars rotateat vsini<15kms-1, there exists a subset of ``fastrotators'' with vsini as high as 30-35 km s-1. All but one ofthe red HB stars in our sample have vsini<10kms-1, and noanalogous rotation bimodality is evident. We also identify anarrow-lined hot star (Teff~=16,000K) with enhancedphotospheric metal abundances and helium depletion, similar to theabundance patterns found among hot BHB stars in globular clusters, andfour other stars that may also belong in this category. We discussdetails of the spectral line fitting procedure that we use to deducevsini and explore how measurements of field HB star rotation may shedlight on the issue of HB star rotation in globular clusters.

Chemical Substructure in the Milky Way Halo: A New Population of Old Stars
We report the results of a coherent study of a new class of halo starsdefined on the basis of the chemical compositions of three metal-poorobjects ([Fe/H]~=-2) that exhibit unusually low abundances ofα-element (Mg, Si, Ca) and neutron-capture (Sr, Y, Ba) material.Our analyses confirm and expand on earlier reports of atypical α-and neutron-capture abundances in BD +80°245, G4-36, and CS22966-043. We also find that the latter two stars exhibit unusualrelative abundance enhancements within the iron peak (Cr, Mn, Ni, Zn),along with what may be large abundances of Ga, an element not previouslyreported as being observed in any metal-poor star. These results providefurther evidence that chemical enrichment and star formation historiesvaried from region to region within the Milky Way halo. Comparing thechemical abundances of the newly identified stellar population tosupernova model yields, we derive supernova ratios of Type Ia versusType II events in the range of0.6<~(NIa/NII)NewPop<~1.3. Forthe Sun, we derive0.18+/-0.01<(NIa/NII)solar<0.25+/-0.06,supernova ratios in good agreement with values found in the literature.Given the relatively low metallicity and relatively highIa/NII> ratios of the low-α stars studiedhere, these objects may have been born from material produced in theyields of the earliest Type Ia supernova events. We also report theresults of a preliminary attempt to employ the observed chemicalabundances of low-metallicity stars in the identification, and possiblecosmic evolution, of Type Ia supernova progenitors, and we discuss thelimitations of current model yields.Based on data acquired at the following facilities: McDonaldObservatory, which is operated by the University of Texas at Austin; LasCampanas Observatory, which is operated by the Observatories of theCarnegie Institution of Washington; W. M. Keck Observatory, which isoperated as a scientific partnership among the California Institute ofTechnology, the University of California, and NASA; and Kitt PeakNational Observatory, National Optical Astronomy Observatory, which isoperated by the Association of Universities for Research in Astronomy(AURA), Inc., under cooperative agreement with the National ScienceFoundation (NSF).

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Orion
Right ascension:05h01m16.62s
Declination:+04°06'37.1"
Apparent magnitude:9.79
Proper motion RA:156.3
Proper motion Dec:-142.7
B-T magnitude:10.206
V-T magnitude:9.825

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 106-1237-1
USNO-A2.0USNO-A2 0900-01302492
HIPHIP 23344

→ Request more catalogs and designations from VizieR