Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1861


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Ca II Triplet Spectroscopy of Large Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Populous Clusters
Using the FORS2 instrument on the Very Large Telescope, we have obtainednear-infrared spectra for more than 200 stars in 28 populous LMCclusters. This cluster sample spans a large range of ages (~1-13 Gyr)and metallicities (-0.3>~[Fe/H]>~-2.0) and has good areal coverageof the LMC disk. The strong absorption lines of the Ca II triplet areused to derive cluster radial velocities and abundances. We determinemean cluster velocities to typically 1.6 km s-1 and meanmetallicities to 0.04 dex (random error). For eight of these clusters,we report the first spectroscopically determined metallicities based onindividual cluster stars, and six of these eight have no publishedradial velocity measurements. Combining our data with archival HubbleSpace Telescope WFPC2 photometry, we find that the newly measuredcluster, NGC 1718, is one of the most metal-poor ([Fe/H]~-0.80)intermediate-age (~2 Gyr) inner disk clusters in the LMC. Similar towhat was found by previous authors, this cluster sample has radialvelocities consistent with that of a single rotating disk system, withno indication that the newly reported clusters exhibit halo kinematics.In addition, our findings confirm previous results that show that theLMC lacks the metallicity gradient typically seen in nonbarred spiralgalaxies, suggesting that the bar is driving the mixing of stellarpopulations in the LMC. However, in contrast to previous work, we findthat the higher metallicity clusters (>~-1.0 dex) in our sample showa very tight distribution (mean [Fe/H]=-0.48, σ=0.09), with notail toward solar metallicities. The cluster distribution is similar towhat has been found for red giant stars in the bar, which indicates thatthe bar and the intermediate-age clusters have similar star formationhistories. This is in good agreement with recent theoretical models thatsuggest the bar and intermediate-age clusters formed as a result of aclose encounter with the SMC ~4 Gyr ago.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

The ellipticities of Galactic and Large Magellanic Cloud globular clusters
The correlations between the ellipticity and the age and mass of LMCglobular clusters are examined, and both are found to be weak. It isconcluded that neither of these properties is mainly responsible for theobserved differences in the LMC and Galactic globular clusterellipticity distributions. Most importantly, age cannot be the primaryfactor in the LMC-Galaxy ellipticity differences, even if there is arelationship, as even the oldest LMC clusters are more elliptical thantheir Galactic counterparts. The strength of the tidal field of theparent galaxy is proposed as the dominant factor in determining theellipticities of that galaxy's globular clusters. A strong tidal fieldrapidly destroys velocity anisotropies in initially triaxial, rapidlyrotating elliptical globular clusters. A weak tidal field, however, isunable to remove these anisotropies and the clusters remain close totheir initial shapes.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Age distribution of LMC clusters from their integrated UBV colors: history of star formation.
In this paper we revise the relationship between ages and metallicitiesof LMC star clusters and their integrated UBV colors. The study standson the catalog of UBV colors of the Large Magellanic Cloud (LMC)clusters by Bica et al. (1994; BCDSP) and the photometric models ofsingle stellar populations (SSP) calculated by Bertelli et al. (1994).These photometric models nicely describe the color distribution of LMCclusters in the (U-B) vs. (B-V) plane together with the observeddispersion of the colors and the existence of a gap in a certain regionof this diagram. In the case of blue clusters, most of the dispersion inthe colors can be accounted for by the presence of stochastic effects onthe mass distribution of stars, whereas for the red ones additionaldispersion's of ~0.2dex in metallicity and of ~0.05mag in color excessare needed. From comparing the observed distribution of integratedcolors in the (U-B) vs. (B-V) diagram with the theoretical models, itturns out that: 1) The data are consistent with the presence of a gap(period of quiescence) in the history of cluster formation. If theage-metallicity relation (AMR) for the LMC obeys the simple model ofchemical evolution, the gap is well evident and corresponds to the ageinterval ~3Gyr to (12-15)Gyr. On the contrary, if the chemicalenrichment has been much slower than in the simple model, so thatintermediate age clusters are less metal rich, the gap is expected tooccur over a much narrower color range and to be hidden by effects ofcolor dispersion. 2) The bimodal distribution of B-V colors can bereproduced by a sequence of clusters almost evenly distributed in thelogarithm of the age, whose metallicity is governed by a normal AMR. Noneed is found of the so-called phase transitions in the integratedcolors of a cluster taking place at suitable ages (Renzini & Buzzoni1986). 3) The gap noticed by BCDSP in the (U-B) vs. (B-V) plane can beexplained by the particular direction along which cluster colors aredispersed in that part of the (U-B) vs. (B-V) diagram. Also in thiscase, no sudden changes in the integrated properties of clusters must beinvoked. The results of this analysis are used to revise the empiricalmethod proposed by Elson & Fall (1985, EF85) to attribute ages toLMC clusters according to their integrated UBV colors. We show that theEF85 method does not provide the correct relation between ages andcolors for clusters of low metallicity and hence its inability to datethe old clusters. We propose two modifications to the definition of theparameter S of EF85 such that the age sequence of red clusters issuitably described, and the intrinsic errors on ages caused by the heavypresence of various effects dispersing the colors are reduced to aminimum. The age sequence is calibrated on 24 template clusters forwhich ages were independently derived from recent color-magnitudediagrams (CMD). Finally, we attribute ages to all clusters present inBCDSP catalog, and derive the global age distribution function (ADF) forLMC clusters. The ADF presents new features that were not clear inprevious analyses of UBV data, but were already suggested by a number ofindependent observational studies. The features in question are periodsof enhanced cluster formation at ~100Myr and 1-2Gyr, and a gap in thecluster formation history between ~3 and (12-15)Gyr. The peaks observedin the distribution of B-V colors are found to be sensitive to thepresence of these periods of enhanced cluster formation and the lack ofextremely red clusters caused by the age gap between intermediate-ageand old clusters.

Detection of the helium flash gap in the integrated (U - B) versus (B - V) diagram for 624 Large Magellanic Cloud clusters
The number of Large Magellanic Cloud clusters with integrated UBVphotometry has been increased by more than a factor of 4, now totaling624 objects. A gap in the cluster distribution through the color-colordiagram appears in the region of the equivalent SWB type IV. Theamplitude of the gap is about 0.1 mag in both colors. The turnoff agesof a few clusters near the gap edges perfectly fit theoreticalpredictions of a red giant branch phase transition. This jump is due tothe first appearance of stars suffering the helium flash, which form abright and populous red giant branch that persists that the subsequentcluster evolution. As an additional result, evidence is found that Hodge7 (SL 735) might be a classical globular cluster.

The cluster system of the Large Magellanic Cloud
A new catalog of clusters in the Large Magellanic Cloud has beenconstructed from searches of the IIIa-J component of the ESO/SERCSouthern Sky Atlas. The catalog contains coordinate and diametermeasurements of 1762 clusters in a 25 deg x 25 deg area of sky centeredon the LMC, but excluding the very crowded 3.5 sq deg region around theBar. The distribution of these clusters appears as two superimposedelliptical systems. The higher density inner system extends over about 8deg; the lower density outer system can be represented by a 13 deg x 10deg disk inclined at 42 deg to the line of sight. There are suggestionsof two weak 'arms' in the latter.

Observed dynamical parameters of the disk clusters of the LMC. I
A study of the observed dynamical parameters of 32 globular clusters ofthe LMC disk has been carried out by means of star counts. The clusterswere measured on a set of three plates (J, V, I) taken with the 1.2 mU.K. Schmidt Telescope. The derived tidal radii were all found to belarge within a very narrow range. As a consequence the range of thetotal masses was found to be very narrow as well. These two parametersare large in comparison to those of the disk young clusters of thegalaxy but they are similar to the dimensions of the halo galacticglobulars.

A Catalogue of Clusters in The LMC
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Mensa
Right ascension:05h10m21.00s
Declination:-70°46'36.0"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1861

→ Request more catalogs and designations from VizieR