Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

M108


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Extragalactic H_2O masers and X-ray absorbing column densities
Having conducted a search for the λ 1.3 cm (22 GHz) water vaporline towards galaxies with nuclear activity, large nuclear columndensities or high infrared luminosities, we present H2O spectra for NGC2273, UGC 5101, and NGC 3393 with isotropic luminosities of 7, 1500, and400 Lȯ. The H2O maser in UGC 5101 is by far the mostluminous yet found in an ultraluminous infrared galaxy. NGC 3393 revealsthe classic spectrum of a "disk maser", represented by three distinctgroups of Doppler components. As in all other known cases except NGC4258, the rotation velocity of the putative masing disk is well below1000 km s-1. Based on the literature and archive data, X-rayabsorbing column densities are compiled for the 64 galaxies withreported maser sources beyond the Magellanic Clouds. For NGC 2782 andNGC 5728, we present Chandra archive data that indicate the presence ofan active galactic nucleus in both galaxies. Modeling the hard nuclearX-ray emission, NGC 2782 is best fit by a high energy reflectionspectrum with NH  1024 cm-2. ForNGC 5728, partial absorption with a power law spectrum indicatesNH 8 × 1023 cm-2. Thecorrelation between absorbing column and H2O emission is analyzed. Thereis a striking difference between kilo- and megamasers with megamasersbeing associated with higher column densities. All kilomasers (L_H_2O< 10 Lȯ) except NGC 2273 and NGC 5194 areCompton-thin, i.e. their absorbing columns are <1024cm-2. Among the H{2}O megamasers, 50% arise fromCompton-thick and 85% from heavily obscured (>1023cm-2) active galactic nuclei. These values are not larger butconsistent with those from samples of Seyfert 2 galaxies not selected onthe basis of maser emission. The similarity in column densities can beexplained by small deviations in position between maser spots andnuclear X-ray source and a high degree of clumpiness in thecircumnuclear interstellar medium.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

Mid-Infrared Spectra of Classical AGNs Observed with the Spitzer Space Telescope
Full low-resolution (65

Metal-poor Globular Clusters and the Formation of Their Host Galaxies
We have determined the total numbers and specific frequencies of blue,metal-poor globular clusters (GCs) in eight spiral and early-typegalaxies. These data, along with five measurements from the literature,show a trend of increasing blue GC specific frequency with increasingmass of the host galaxy. The increase is not accounted for in a simplegalaxy formation model in which elliptical galaxies and their GC systemsare formed by the merger of typical spiral galaxies. The data appearbroadly consistent with hierarchical formation scenarios in whichmetal-poor GCs are formed over a finite period in the early universeduring the initial stages of galaxy assembly. In this picture, theobserved trend is related to biasing, in the sense that the more massivegalaxies of today began assembling earlier and therefore formedrelatively more GCs during this early epoch of metal-poor GC formation.We discuss how comparisons of the observed specific frequency ofmetal-poor GCs with model calculations can constrain the formationredshift of these objects.

EGRET Upper Limits and Stacking Searches of Gamma-Ray Observations of Luminous and Ultraluminous Infrared Galaxies
We present a stacking analysis of EGRET γ-ray observations at thepositions of luminous and ultraluminous infrared galaxies. The latterwere selected from the recently presented HCN survey, which is thoughtto contain the most active star-forming regions of the universe.Different sorting criteria are used, and since there is no positivecollective detection of γ-ray emission from these objects, wedetermined both collective and individual upper limits. The uppermostexcess we find appears in the case of ULIRGs ordered by redshift, at avalue of 1.8 σ.

New H2O masers in Seyfert and FIR bright galaxies
Using the Effelsberg 100-m telescope, detections of four extragalacticwater vapor masers are reported. Isotropic luminosities are ~50, 1000, 1and 230 Lȯ for Mrk 1066 (UGC 2456), Mrk 34, NGC 3556 andArp 299, respectively. Mrk 34 contains by far the most distant and oneof the most luminous water vapor megamasers so far reported in a Seyfertgalaxy. The interacting system Arp 299 appears to show two maserhotspots separated by approximately 20´´. With these newresults and even more recent data from Braatz et al. (2004, ApJ, 617,L29), the detection rate in our sample of Seyferts with known jet-NarrowLine Region interactions becomes 50% (7/14), while in star forminggalaxies with high (S100~μ m>50 Jy) far infrared fluxesthe detection rate is 22% (10/45). The jet-NLR interaction sample maynot only contain “jet-masers” but also a significant numberof accretion “disk-masers” like those seen in NGC 4258. Astatistical analysis of 53 extragalactic H2O sources (excluding theGalaxy and the Magellanic Clouds) indicates (1) that the correlationbetween IRAS Point Source and H2O luminosities, established forindividual star forming regions in the galactic disk, also holds forAGN-dominated megamaser galaxies; (2) that maser luminosities are notcorrelated with 60 μm/100 μm color temperatures; and (3) that onlya small fraction of the luminous megamasers (L_H_2O > 100Lȯ) detectable with 100-m sized telescopes have so farbeen identified. The H2O luminosity function (LF) suggests that thenumber of galaxies with 1 Lȯ < L_H_2O < 10Lȯ, the transition range between“kilomasers” (mostly star formation) and“megamasers” (active galactic nuclei), is small. The overallslope of the LF, ~-1.5, indicates that the number of detectable masersis almost independent of their luminosity. If the LF is not steepeningat very high maser luminosities and if it is possible to find suitablecandidate sources, H2O megamasers at significant redshifts should bedetectable even with present day state-of-the-art facilities.

HI in NGC 5433 and its environment: high-latitude emission in a small galaxy group
We present HI synthesis maps of the edge-on starburst NGC 5433 and itsenvironment, obtained with the Very Large Array in its C and Dconfigurations. The observations and spectral model residuals of themain disc emission in NGC 5433 reveal three extraplanar features. Weassociate two of these features with coherent extraplanar extensionsacross multiple spectral channels in our data, including a complete loopin position-velocity space. Interpreting the latter as an expandingshell we derive a corresponding input energy of 2 ×1054 erg, comparable to that for the largest supershellsfound in the Galaxy and those in other edge-on systems. NGC 5433 is in aricher environment than previously thought. We confirm that KUG 1359+326is a physical companion to NGC 5433 and find two new faint companions,both with Minnesota Automated Plate Scanner identifications, which welabel SIS-1 and SIS-2. Including the more distant IC 4357, NGC 5433 isthe dominant member of a group of at least five galaxies, spanning over750 kpc in a filamentary structure. A variety of evidence suggests thatinteractions are occurring in this group. While a number of underlyingmechanisms are consistent with the morphology of the high-latitudefeatures in NGC 5433, we argue that environmental effects may play arole in their generation.

The Ultraluminous X-Ray Source Population from the Chandra Archive of Galaxies
One hundred fifty-four discrete non-nuclear ultraluminous X-ray (ULX)sources, with spectroscopically determined intrinsic X-ray luminositiesgreater than 1039 ergs s-1, are identified in 82galaxies observed with Chandra's Advanced CCD Imaging Spectrometer.Source positions, X-ray luminosities, and spectral and timingcharacteristics are tabulated. Statistical comparisons between theseX-ray properties and those of the weaker discrete sources in the samefields (mainly neutron star and stellar-mass black hole binaries) aremade. Sources above ~1038 ergs s-1 display similarspatial, spectral, color, and variability distributions. In particular,there is no compelling evidence in the sample for a new and distinctclass of X-ray object such as the intermediate-mass black holes.Eighty-three percent of ULX candidates have spectra that can bedescribed as absorbed power laws with index <Γ>=1.74 andcolumn density =2.24×1021cm-2, or ~5 times the average Galactic column. About 20% ofthe ULXs have much steeper indices indicative of a soft, and likelythermal, spectrum. The locations of ULXs in their host galaxies arestrongly peaked toward their galaxy centers. The deprojected radialdistribution of the ULX candidates is somewhat steeper than anexponential disk, indistinguishable from that of the weaker sources.About 5%-15% of ULX candidates are variable during the Chandraobservations (which average 39.5 ks). Comparison of the cumulative X-rayluminosity functions of the ULXs to Chandra Deep Field results suggests~25% of the sources may be background objects, including 14% of the ULXcandidates in the sample of spiral galaxies and 44% of those inelliptical galaxies, implying the elliptical galaxy ULX population isseverely compromised by background active galactic nuclei. Correlationswith host galaxy properties confirm the number and total X-rayluminosity of the ULXs are associated with recent star formation andwith galaxy merging and interactions. The preponderance of ULXs instar-forming galaxies as well as their similarities to less-luminoussources suggest they originate in a young but short-lived populationsuch as the high-mass X-ray binaries with a smaller contribution (basedon spectral slope) from recent supernovae. The number of ULXs inelliptical galaxies scales with host galaxy mass and can be explainedmost simply as the high-luminosity end of the low-mass X-ray binarypopulation.

HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
We report systematic HCN J=1-0 (and CO) observations of a sample of 53infrared (IR) and/or CO-bright and/or luminous galaxies, including sevenultraluminous infrared galaxies, nearly 20 luminous infrared galaxies,and more than a dozen of the nearest normal spiral galaxies. This is thelargest and most sensitive HCN survey of galaxies to date. All galaxiesobserved so far follow the tight correlation between the IR luminosityLIR and the HCN luminosity LHCN initially proposedby Solomon, Downes, & Radford, which is detailed in a companionpaper. We also address here the issue of HCN excitation. There is noparticularly strong correlation between LHCN and the 12 μmluminosity; in fact, of all the four IRAS bands, the 12 μm luminosityhas the weakest correlation with the HCN luminosity. There is also noevidence of stronger HCN emission or a higher ratio of HCN and COluminosities LHCN/LCO for galaxies with excess 12μm emission. This result implies that mid-IR radiative pumping, orpopulating, of the J=1 level of HCN by a mid-IR vibrational transitionis not important compared with the collisional excitation by densemolecular hydrogen. Furthermore, large velocity gradient calculationsjustify the use of HCN J=1-0 emission as a tracer of high-densitymolecular gas (>~3×104/τcm-3) andgive an estimate of the mass of dense molecular gas from HCNobservations. Therefore, LHCN may be used as a measure of thetotal mass of dense molecular gas, and the luminosity ratioLHCN/LCO may indicate the fraction of moleculargas that is dense.

The Star Formation Rate and Dense Molecular Gas in Galaxies
HCN luminosity is a tracer of dense molecular gas,n(H2)>~3×104cm-3, associatedwith star-forming giant molecular cloud (GMC) cores. We present theresults and analysis of our survey of HCN emission from 65 infraredgalaxies, including nine ultraluminous infrared galaxies (ULIGs,LIR>~1012Lsolar), 22 luminousinfrared galaxies (LIGs,1011Lsolar0.06 are LIGs or ULIGs. Normal spiralsall have similar and low dense gas fractionsLHCN/LCO=0.02-0.05. The global star formationefficiency depends on the fraction of the molecular gas in a densephase.

Nuclear Stellar Populations in the Infrared Space Observatory Atlas of Bright Spiral Galaxies
To understand the nuclear stellar populations and star formationhistories of the nuclei of spiral galaxies, we have obtained K-bandnuclear spectra for 41 galaxies and H-band spectra for 20 galaxies inthe Infrared Space Observatory's Atlas of Bright Spiral Galaxies. In thevast majority of the subsample (80%), the near-infrared spectra suggestthat evolved red stars completely dominate the nuclear stellarpopulations and that hot young stars are virtually nonexistent. Thesignatures of recent star formation activity are only found in 20% ofthe subsample, even though older red stars still dominate the stellarpopulations in these galaxies. Given the dominance of evolved stars inmost galaxy nuclei and the nature of the emission lines in the galaxieswhere they were detected, we suggest that nuclear star formationproceeds in the form of instantaneous bursts. The stars produced bythese bursts comprise only ~2% of the total nuclear stellar mass inthese galaxies, but we demonstrate how the nuclear stellar populationsof normal spiral galaxies can be built up through a series of thesebursts. The bursts were detected only in Sbc galaxies and later, andboth bars and interactions appeared to be sufficient, but not necessary,triggers for the nuclear star formation activity. The vast majority ofgalaxies with nuclear star formation were classified as H II galaxies.With one exception, LINERs and transition objects were dominated byolder red stars, which suggested that star formation was not responsiblefor generating these galaxies' optical line emission.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

2-10 keV luminosity of high-mass binaries as a gauge of ongoing star-formation rate
Based on recent work on spectral decomposition of the emission ofstar-forming galaxies, we assess whether the integrated 2-10 keVemission from high-mass X-ray binaries (HMXBs),L2-10HMXB, can be used as a reliable estimator ofongoing star formation rate (SFR). Using a sample of 46 local (z 0.1) star-forming galaxies, and spectral modeling of ASCA, BeppoSAX, andXMM-Newton data, we demonstrate the existence of a linear SFR -L2-10^ HMXB relation which holds over ˜5 decades in X-rayluminosity and SFR. The total 2-10 keV luminosity is not a precise SFRindicator because at low SFR (i.e., in normal andmoderately-starbursting galaxies) it is substantially affected by theemission of low-mass X-ray binaries, which do not trace the current SFRdue to their long evolution lifetimes, while at very high SFR (i.e., forvery luminous FIR-selected galaxies) it is frequently affected by thepresence of strongly obscured AGNs. The availability of purelySB-powered galaxies - whose 2-10 keV emission is mainly due to HMXBs -allows us to properly calibrate the SFR -L2-10HMXB relation. The SFR -L2-10HMXB relation holds also for distant (z ˜1) galaxies in the Hubble Deep Field North sample, for which we lackspectral information, but whose SFR can be estimated from deep radiodata. If confirmed by more detailed observations, it may be possible touse the deduced relation to identify distant galaxies that are X-rayoverluminous for their (independently estimated) SFR, and are thereforelikely to hide strongly absorbed AGNs.Appendix A is only available in electronic form athttp://www.edpsciences.org

Studying the Nearby Universe with Chandra
I highlight results from Chandr observations of nearby galaxies,including the Milky Way. These observations have offered insights intoold mysteries and indications of new high energy astrophysical phenomenaand processes that are yet to be understood.

The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories
A major problem in extragalactic astronomy is the inability todistinguish in a robust, physical, and model-independent way how galaxypopulations are physically related to each other and to their formationhistories. A similar, but distinct, and also long-standing question iswhether the structural appearances of galaxies, as seen through theirstellar light distributions, contain enough physical information tooffer this classification. We argue through the use of 240 images ofnearby galaxies that three model-independent parameters measured on asingle galaxy image reveal its major ongoing and past formation modesand can be used as a robust classification system. These parametersquantitatively measure: the concentration (C), asymmetry (A), andclumpiness (S) of a galaxy's stellar light distribution. When combinedinto a three-dimensional ``CAS'' volume all major classes of galaxies invarious phases of evolution are cleanly distinguished. We argue thatthese three parameters correlate with important modes of galaxyevolution: star formation and major merging activity. This is arguedthrough the strong correlation of Hα equivalent width andbroadband colors with the clumpiness parameter S, the uniquely largeasymmetries of 66 galaxies undergoing mergers, and the correlation ofbulge to total light ratios, and stellar masses, with the concentrationindex. As an obvious goal is to use this system at high redshifts totrace evolution, we demonstrate that these parameters can be measured,within a reasonable and quantifiable uncertainty with available data outto z~3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Fieldimages.

Chandra Observation of the Edge-on Galaxy NGC 3556 (M108): Violent Galactic Disk-Halo Interaction Revealed
We present a 60 ks Chandra ACIS-S observation of the isolated edge-onspiral galaxy NGC 3556, together with a multiwavelength analysis ofvarious discrete X-ray sources and diffuse X-ray features. Among 33discrete X-ray sources detected within the IB=25 magarcsec-2 isophote ellipse of the galaxy, we identify acandidate for the galactic nucleus, an ultraluminous X-ray source thatmight be an accreting intermediate-mass black hole, a possible X-raybinary with a radio counterpart, and two radio-bright giant H IIregions. We detect large amounts of extraplanar diffuse X-ray emission,which extend about 10 kpc radially in the disk and >~4 kpc away fromthe galactic plane. The diffuse X-ray emission exhibits significantsubstructures, possibly representing various blown-out superbubbles orchimneys of hot gas heated in massive star-forming regions. ThisX-ray-emitting gas has temperatures in the range of~(2-7)×106 K and has a total cooling rate of~2×1040 ergs s-1. The energy can be easilysupplied by supernova blast waves in the galaxy. These results show NGC3556 to be a galaxy undergoing vigorous disk-halo interaction. The haloin NGC 3556 is considerably less extended, however, than that of NGC4631, in spite of many similarities between the two galaxies. This maybe due to the fact that NGC 3556 is isolated, whereas NGC 4631 isinteracting. Thus, NGC 3556 presents a more pristine environment forstudying the disk-halo interaction.

High-Latitude H I in NGC 2613: Buoyant Disk-Halo Outflow
We combine new VLA D configuration H I data of NGC 2613 with previoushigh-resolution data to show new disk-halo features in this galaxy. Theglobal H I distribution is modeled in detail using a technique that candisentangle the effects of inclination from scale height and can alsosolve for the average volume density distribution in and perpendicularto the disk. The model shows that the galaxy's inclination is on the lowend of the range given by Chaves & Irwin in a previous paper andthat the H I disk is thin (ze=188 pc), showing no evidencefor halo. Numerous discrete disk-halo features are observed, however,achieving z heights up to 28 kpc from midplane. One prominent feature inparticular, of mass 8×107 Msolar and height22 kpc, is seen on the advancing side of the galaxy at a projectedgalactocentric radius of 15.5 kpc. If this feature achieves such highlatitudes because of events in the disk alone, then input energies oforder ~1056 ergs are required. We have instead investigatedthe feasibility of such a large feature being produced via buoyancy(with drag) within a hot, preexisting X-ray corona. Reasonable plumedensities, temperatures, stall height (~11 kpc), outflow velocities, andages can indeed be achieved in this way. The advantage of this scenariois that the input energy need only be sufficient to produce blowout, acondition that requires a reduction of 3 orders of magnitude in energy.If this is correct, there should be an observable X-ray halo around NGC2613.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

The 2MASS Large Galaxy Atlas
We present the largest galaxies as seen in the near-infrared (1-2μm), imaged with the Two Micron All Sky Survey (2MASS), ranging inangular size from 1' to 1.5d. We highlight the 100 largest in thesample. The galaxies span all Hubble morphological types, includingelliptical galaxies, normal and barred spirals, and dwarf and peculiarclasses. The 2MASS Large Galaxy Atlas provides the necessary sensitivityand angular resolution to examine in detail morphologies in thenear-infrared, which may be radically different from those in theoptical. Internal structures such as spirals, bulges, warps, rings,bars, and star formation regions are resolved by 2MASS. In addition tolarge mosaic images, the atlas includes astrometric, photometric, andshape global measurements for each galaxy. A comparison of fundamentalmeasures (e.g., surface brightness, Hubble type) is carried out for thesample and compared with the Third Reference Catalogue. We furthershowcase NGC 253 and M51 (NGC 5194/5195) to demonstrate the quality anddepth of the data. The atlas represents the first uniform, all-sky,dust-penetrated view of galaxies of every type, as seen in thenear-infrared wavelength window that is most sensitive to the dominantmass component of galaxies. The images and catalogs are availablethrough the NASA/IPAC Extragalactic Database and Infrared ScienceArchive and are part of the 2MASS Extended Source Catalog.

Revised positions for CIG galaxies
We present revised positions for the 1051 galaxies belonging to theKarachentseva Catalog of Isolated Galaxies (CIG). New positions werecalculated by applying SExtractor to the Digitized Sky Survey CIG fieldswith a spatial resolution of 1 arcsper 2. We visually checked theresults and for 118 galaxies had to recompute the assigned positions dueto complex morphologies (e.g. distorted isophotes, undefined nuclei,knotty galaxies) or the presence of bright stars. We found differencesbetween older and newer positions of up to 38 arcsec with a mean valueof 2 arcsper 96 relative to SIMBAD and up to 38 arcsec and 2 arcsper 42respectively relative to UZC. Based on star positions from the APMcatalog we determined that the DSS astrometry of five CIG fields has amean offset in (alpha , delta ) of (-0 arcsper 90, 0 arcsper 93) with adispersion of 0 arcsper 4. These results have been confirmed using the2MASS All-Sky Catalog of Point Sources. The intrinsic errors of ourmethod combined with the astrometric ones are of the order of 0 arcsper5.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/411/391

An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge-on spiral galaxies. I. How common are gaseous halos among non-starburst galaxies?
In a series of two papers we present results of a new Hα imagingsurvey, aiming at the detection of extraplanar diffuse ionized gas inhalos of late-type spiral galaxies. We have investigated a sample of 74nearby edge-on spirals, covering the northern and southern hemisphere.In 30 galaxies we detected extraplanar diffuse emission at meandistances of |z| ~ 1-2 kpc. Individual filaments can be traced out to|z|<=6 kpc in a few cases. We find a good correlation between the FIRflux ratio (S60/S100) and the SFR per unit area(LFIR/D225), based on thedetections/non-detections. This is actually valid for starburst, normaland for quiescent galaxies. A minimal SFR per unit area for the lowestS60/S100 values, at which extended emission hasbeen detected, was derived, which amounts to dotEA25thres = (3.2+/-0.5)*E40ergs-1 kpc-2. There are galaxies where extraplanaremission was detected at smaller values ofLFIR/D225, however, only in combinationwith a significantly enhanced dust temperature. The results corroboratethe general view that the gaseous halos are a direct consequence of SFactivity in the underlying galactic disk.Based on observations collected at the European Southern Observatory,Chile (ESO No. 63.N-0070, ESO No. 64.N-0034, ESO No. 65.N.-0002).

Galaxy classification using fractal signature
Fractal geometry is becoming increasingly important in the study ofimage characteristics. For recognition of regions and objects in naturalscenes, there is always a need for features that are invariant and theyprovide a good set of descriptive values for the region. There are manyfractal features that can be generated from an image. In this paper,fractal signatures of nearby galaxies are studied with the aim ofclassifying them. The fractal signature over a range of scales proved tobe an efficient feature set with good discriminating power. Classifierswere designed using nearest neighbour method and neural networktechnique. Using the nearest distance approach, classification rate wasfound to be 92%. By the neural network method it has been found toincrease to 95%.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

The 2-10 keV luminosity as a Star Formation Rate indicator
Radio and far infrared luminosities of star-forming galaxies follow atight linear relation. Making use of ASCA and BeppoSAX observations of awell-defined sample of nearby star-forming galaxies, we argue that tightlinear relations hold between the X-ray, radio and far infraredluminosities. The effect of intrinsic absorption is investigated takingNGC 3256 as a test case. It is suggested that the hard X-ray emission isdirectly related to the Star Formation Rate. Star formation processesmay also account for most of the 2-10 keV emission from LLAGNs of lowerX-ray luminosities (for the same FIR and radio luminosity). Deep Chandraobservations of a sample of radio-selected star-forming galaxies in theHubble Deep Field North show that the same relation holds also at high(0.2<~ z<~ 1.3) redshift. The X-ray/radio relations also allow aderivation of X-ray number counts up to very faint fluxes from the radioLog N-Log S a, which is consistent with current limits and models. Thusthe contribution of star-forming galaxies to the X-ray background can beestimated.

Urban Astronomy: Observing the Messier Objects from the City
Not Available

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

An Infrared Space Observatory Atlas of Bright Spiral Galaxies
In this first paper in a series we present an atlas of infrared imagesand photometry from 1.2 to 180 μm for a sample of bright spiralgalaxies. The atlas galaxies are an optically selected,magnitude-limited sample of 77 spiral and S0 galaxies chosen from theRevised Shapley-Ames Catalog (RSA). The sample is a representativesample of spiral galaxies and includes Seyfert galaxies, LINERs,interacting galaxies, and peculiar galaxies. Using the Infrared SpaceObservatory (ISO), we have obtained 12 μm images and photometry at60, 100, and 180 μm for the galaxies. In addition to its imagingcapabilities, ISO provides substantially better angular resolution thanis available in the IRAS survey, and this permits discrimination betweeninfrared activity in the central regions and global infrared emission inthe disks of these galaxies. These ISO data have been supplemented withJHK imaging using ground-based telescopes. The atlas includes 2 and 12μm images. Following an analysis of the properties of the galaxies,we have compared the mid-infrared and far-infrared ISO photometry withIRAS photometry. The systematic differences we find between the IRASFaint Source Catalog and ISO measurements are directly related to thespatial extent of the ISO fluxes, and we discuss the reliability of IRASFaint Source Catalog total flux densities and flux ratios for nearbygalaxies. In our analysis of the 12 μm morphological features we findthat most but not all galaxies have bright nuclear emission. We find 12μm structures such as rings, spiral arm fragments, knotted spiralarms, and bright sources in the disks that are sometimes brighter thanthe nuclei at mid-infrared wavelengths. These features, which arepresumably associated with extranuclear star formation, are common inthe disks of Sb and later galaxies but are relatively unimportant inS0-Sab galaxies. Based on observations with the Infrared SpaceObservatory (ISO), an ESA project with instruments funded by ESA MemberStates (especially the PI countries: France, Germany, Netherlands, andUnited Kingdom) and with the participation of ISAS and NASA.

Local velocity field from sosie galaxies. I. The Peebles' model
Pratton et al. (1997) showed that the velocity field around clusterscould generate an apparent distortion that appears as tangentialstructures or radial filaments. In the present paper we determine theparameters of the Peebles' model (1976) describing infall of galaxiesonto clusters with the aim of testing quantitatively the amplitude ofthis distortion. The distances are determined from the concept of sosiegalaxies (Paturel 1984) using 21 calibrators for which the distanceswere recently calculated from two independent Cepheid calibrations. Weuse both B and I-band magnitudes. The Spaenhauer diagram method is usedto correct for the Malmquist bias. We give the equations for theconstruction of this diagram. We analyze the apparent Hubble constant indifferent regions around Virgo and obtain simultaneously the Local Groupinfall and the unperturbed Hubble constant. We found:[VLG-infall = 208 ± 9 km s-1] [\log H =1.82 ± 0.04 (H ≈ 66 ± 6 km s-1Mpc-1).] The front side and backside infalls can be seenaround Virgo and Fornax. In the direction of Virgo the comparison ismade with the Peebles' model. We obtain: [vinfall} =CVirgo/r0.9 ± 0.2] withCVirgo=2800 for Virgo and CFornax=1350 for Fornax,with the adopted units (km s-1 and Mpc). We obtain thefollowing mean distance moduli: [μVirgo=31.3 ± 0.2(r=18 Mpc )] [μFornax=31.7 ± 0.3 (r=22 Mpc). ] Allthese quantities form an accurate and coherent system. Full Table 2 isonly available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/57

Supernovae in isolated galaxies, in pairs and in groups of galaxies
In order to investigate the influence of environment on supernova (SN)production, we have performed a statistical investigation of the SNediscovered in isolated galaxies, in pairs and in groups of galaxies. 22SNe in 18 isolated galaxies, 48 SNe in 40 galaxy members of 37 pairs and211 SNe in 170 galaxy members of 116 groups have been selected andstudied. We found that the radial distributions of core-collapse SNe ingalaxies located in different environments are similar, and consistentwith those reported by Bartunov, Makarova & Tsvetkov. SNe discoveredin pairs do not favour a particular direction with respect to thecompanion galaxy. Also, the azimuthal distributions inside the hostmembers of galaxy groups are consistent with being isotropics. The factthat SNe are more frequent in the brighter components of the pairs andgroups is expected from the dependence of the SN rates on the galaxyluminosity. There is an indication that the SN rate is higher in galaxypairs compared with that in groups. This can be related to the enhancedstar formation rate in strongly interacting systems. It is concludedthat, with the possible exception of strongly interacting systems, theparent galaxy environment has no direct influence on SN production.

The rise and rise of the deep sky image
Presidential Address to the British Astronomical Association, 2000October 25

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ursa Major
Right ascension:11h11m30.00s
Declination:+55°40'00.0"
Apparent magnitude:10.1

Catalogs and designations:
Proper Names   (Edit)
MessierM 108
NGC 2000.0NGC 3556

→ Request more catalogs and designations from VizieR