目录
图像
上传图像
DSS Images Other Images
相关文章
The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.
| Revised masses of dust and gas of SCUBA Local Universe Survey far-infrared bright galaxies based on a recent CO survey Recent CO measurements of an essentially complete subsample of galaxiesfrom the SCUBA Local Universe Survey (SLUGS) are used to examine theirimplications for dust and gas masses in this sample. Estimates of dustmasses are affected by a contribution to the SCUBA brightnessmeasurements by CO(3-2) emission, and molecular gas masses by the use ofa modified value of the CO-to-H2 conversion factor X. Theaverage dust mass is reduced by 25-38 per cent, which has no bearing onearlier conclusions concerning the shape of the dust mass luminosityfunction derived from the SLUGS. The value of X found from the COsurvey, when applied together with the reduction in dust masses, leadsto lower estimates for the mean gas-to-dust mass ratios, where the gasincludes both H2 and H I. For the CO sample, the mean globalratio is reduced from approximately 430 to about 320-360, but is furtherreduced to values near 50 when applied to the nuclear regions relevantto the CO observations. We discuss these results and suggest that thedifferences between the nuclear and outer regions may simply reflectdifferences in metallicity or the existence of considerable amounts ofunobserved cold dust in the outer regions of these galaxies.
| Dust masses and star formation in bright IRAS galaxies. Application of a physical model for the interpretation of FIR observations We address the problem of modeling the far-infrared (FIR) spectrum andderiving the star-formation rate (SFR) and the dust mass of spiralgalaxies. We use the realistic physical model of Popescu et al.(\cite{popescu}) to describe the overall ultra-violet (UV), optical andFIR spectral energy distribution (SED) of a spiral galaxy. The modeltakes into account the 3-dimensional old and young stellar distributionsin the bulge and the disk of a galaxy, together with the dust geometry.The geometrical characteristics of the galaxy and the intrinsic opticaland near-infrared spectra are determined by the galaxy's observed K-bandphotometry. The UV part of the spectrum is assumed to be proportional tothe SFR through the use of population synthesis models. By solving theradiative transfer equation, we are able to determine the absorbedenergy, the dust temperature and the resulting FIR spectrum. The modelhas only three free parameters: SFR, dust mass, and the fraction of theUV radiation which is absorbed locally by dense dust in the HII regions.Using this model, we are able to fit well the FIR spectra of 62 brightIRAS galaxies from the ``SCUBA Local Universe Galaxy Survey" of Dunne etal. (\cite{dunne1}). As a result, we are able to determine, amongothers, their SFR and dust mass. We find that, on average, the SFR (inabsolute units), the star-formation efficiency, the SFR surface densityand the ratio of FIR luminosity over the total intrinsic luminosity, arelarger than the respective values of typical spiral galaxies of the samemorphological type. We also find that the mean gas-to-dust mass ratio isclose to the Galactic value, while the average central face-on opticaldepth of these galaxies in the V band is 2.3. Finally, we find a strongcorrelation between SFR or dust mass and observed FIR quantities liketotal FIR luminosity or FIR luminosity at 100 and 850 μm. Thesecorrelations yield well-defined relations, which can be used todetermine a spiral galaxy's SFR and dust-mass content from FIRobservations.
| CO Molecular Gas in Infrared-luminous Galaxies We present the first statistical survey of the properties of the12CO(1-0) and 12CO(3-2) line emission from thenuclei of a nearly complete subsample of 60 infrared (IR) luminousgalaxies selected from SCUBA Local Universe Galaxy Survey (SLUGS). Thissubsample is flux limited at S60μm>=5.24 Jy with far-IR(FIR) luminosities mostly at LFIR>1010Lsolar. We compare the emission line strengths of12CO(1-0) and (3-2) transitions at a common resolution of~15". The measured 12CO(3-2) to (1-0) line intensity ratiosr31 vary from 0.22 to 1.72, with a mean value of 0.66 for thesources observed, indicating a large spread of the degree of excitationof CO in the sample. These CO data, together with a wide range of dataat different wavelengths obtained from the literature, allow us to studythe relationship between the CO excitation conditions and the physicalproperties of gas/dust and star formation in the central regions ofgalaxies. Our analysis shows that there is a nonlinear relation betweenCO and FIR luminosities, such that their ratioLCO/LFIR decreases linearly with increasingLFIR. This behavior was found to be consistent with theSchmidt law relating star formation rate to molecular gas content, withan index N=1.4+/-0.3. We also find a possible dependence of the degreeof CO gas excitation on the efficiency of star-forming activity. Usingthe large velocity gradient (LVG) approximation to model the observeddata, we investigate the CO-to-H2 conversion factor X for theSLUGS sample. The results show that the mean value of X for the SLUGSsample is lower by a factor of 10 compared to the conventional valuederived for the Galaxy, if we assume the abundance of CO relative toH2, ZCO=10-4. For a subset of 12galaxies with H I maps, we derive a mean total face-on surface densityof H2+HI of about 42 Msolar pc-2 withinabout 2 kpc of the nucleus. This value is intermediate between that ingalaxies like our own and those with strong star formation.
| The IRAS Revised Bright Galaxy Sample IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.
| The distribution of atomic gas and dust in nearby galaxies - I. Presentation of matched-resolution VLA H I and SCUBA 850-μm maps We present matched-resolution VLA HI and SCUBA 850-μm maps of 20IRAS-bright galaxies. Of the galaxies observed, two were not detected inHI and two were detected in absorption. The HI distributions of thegalaxies have a range of morphologies. Some of the systems appear HIdeficient in the central regions which could be due to a high conversionrate of HI into molecules or HI absorption. In contrast to the HI, the850-μm emission has a smooth distribution which is concentratedtowards the optical centre of each galaxy. We also find evidence for850-μm emission extending to the periphery of the optical disc insome of the galaxies. Finally, we note that the relative lack of850-μm emission when compared with HI does not necessarily mean thatthe atomic gas and dust do not have similar mass distributions.
| Bar Galaxies and Their Environments The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.
| The UZC-SSRS2 Group Catalog We apply a friends-of-friends algorithm to the combined Updated ZwickyCatalog and Southern Sky Redshift Survey to construct a catalog of 1168groups of galaxies; 411 of these groups have five or more members withinthe redshift survey. The group catalog covers 4.69 sr, and all groupsexceed the number density contrast threshold, δρ/ρ=80. Wedemonstrate that the groups catalog is homogeneous across the twounderlying redshift surveys; the catalog of groups and their membersthus provides a basis for other statistical studies of the large-scaledistribution of groups and their physical properties. The medianphysical properties of the groups are similar to those for groupsderived from independent surveys, including the ESO Key Programme andthe Las Campanas Redshift Survey. We include tables of groups and theirmembers.
| Compact groups in the UZC galaxy sample Applying an automatic neighbour search algorithm to the 3D UZC galaxycatalogue (Falco et al. \cite{Falco}) we have identified 291 compactgroups (CGs) with radial velocity between 1000 and 10 000 kms-1. The sample is analysed to investigate whether Tripletsdisplay kinematical and morphological characteristics similar to higherorder CGs (Multiplets). It is found that Triplets constitute lowvelocity dispersion structures, have a gas-rich galaxy population andare typically retrieved in sparse environments. Conversely Multipletsshow higher velocity dispersion, include few gas-rich members and aregenerally embedded structures. Evidence hence emerges indicating thatTriplets and Multiplets, though sharing a common scale, correspond todifferent galaxy systems. Triplets are typically field structures whilstMultiplets are mainly subclumps (either temporarily projected orcollapsing) within larger structures. Simulations show that selectioneffects can only partially account for differences, but significantcontamination of Triplets by field galaxy interlopers could eventuallyinduce the observed dependences on multiplicity. Tables 1 and 2 are onlyavailable in electronic at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/35
| The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.
| Nearby Optical Galaxies: Selection of the Sample and Identification of Groups In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.
| The QDOT all-sky IRAS galaxy redshift survey We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.
| Arcsecond Positions of UGC Galaxies We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.
| Bulge-Disk Decomposition of 659 Spiral and Lenticular Galaxy Brightness Profiles We present one of the largest homogeneous sets of spiral and lenticulargalaxy brightness profile decompositions completed to date. The 659galaxies in our sample have been fitted with a de Vaucouleurs law forthe bulge component and an inner-truncated exponential for the diskcomponent. Of the 659 galaxies in the sample, 620 were successfullyfitted with the chosen fitting functions. The fits are generally welldefined, with more than 90% having rms deviations from the observedprofile of less than 0.35 mag. We find no correlations of fittingquality, as measured by these rms residuals, with either morphologicaltype or inclination. Similarly, the estimated errors of the fittedcoefficients show no significant trends with type or inclination. Thesedecompositions form a useful basis for the study of the lightdistributions of spiral and lenticular galaxies. The object base issufficiently large that well-defined samples of galaxies can be selectedfrom it.
| Lopsidedness in Early-Type Disk Galaxies We quantify the mean asymmetry of 54 face-on, early-type disk galaxies(S0 to Sab) using the amplitude of the m = 1 azimuthal Fourier componentof the R-band surface brightness. We find that the median lopsidedness,, of our sample is 0.11 and that the most lopsided 20% ofour galaxies have >= 0.19. Asymmetries in early-typedisks appear to be of similar frequency and strength as in late-typedisk galaxies. We have observed our early-type disks in a bandpass (Rband) in which the light is dominated by stars with ages greater than10^9 yr and therefore are seeing azimuthal asymmetries in the stellarmass distribution. The similar degree of lopsidedness seen in disks ofvery different star formation rates indicates that the lopsidedness inall galactic disks is primarily due to azimuthal mass asymmetries.Hence, 20% of all disk galaxies (regardless of Hubble type) haveazimuthal asymmetries, >= 0.19, in their stellar diskmass distribution, confirming lopsidedness as a dynamical phenomenon.
| Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.
| Dust and CO emission in normal spirals. I. The data. We present 1300μm continuum observations and measurements of the CO(1-0) and (2-1) emission from the inner regions of 98 normal galaxies.The spatial resolution ranges from 11" to 45". The sources come from acomplete FIR selected sample of 138 inactive spirals with an opticaldiameter D_25_<=180".
| An image database. II. Catalogue between δ=-30deg and δ=70deg. A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.
| The bar-enhanced star-formation activities in spiral galaxies. We use the ratio L_FIR_/L_B_ and the IRAS color index S_25_/S_12_ (bothwidely used as indices of relative star formation rates in galaxies) toanalyse subsets (containing no known AGNs or merging/interactinggalaxies) of: (a) the IRAS Bright Galaxy Sample, (b) galaxies from theoptically complete RSA sample which have IRAS detections in all fourbands, and (c) a volume-limited IR-unselected sample. We confirm thatIR-bright barred (SB) galaxies do, on average, have very significantlyhigher values of the FIR-optical and S_25_/S_12_ ratios (and presumably,higher relative star formation rates, SFR) than that do unbarred ones;the effect is most obvious in the IR colors. We also confirm that thesedifferences are confined to early-type (S0/a-Sbc) spirals and are notevident among late-type systems (Sc-Sdm). Unlike others, we see noenhancement of the SFR in weakly-barred (SAB) galaxies. We furtherconfirm that the effect of bars on the SFR is associated with therelative IR luminosity and show that it is detectable only in galaxieswith L_FIR_/L_B_>1/3, suggesting that as soon as they have anyeffect, bars translate their host galaxies into this relativelyIR-luminous group. Conversely, for galaxies with L_FIR_/L_B_ below ~0.1this luminosity ratio is lower among barred than unbarred systems, againconfirming and quantifying an earlier result. Although there is nosimple physical relation between H I content and star formation, astrong correlation of H I content with the presence of bars has beenfound for early-type spirals with L_FIR_/L_B_>1/3. This suggests thatthe availability of fuel is the factor determining just which galaxiesundergo bar-induced starbursts.
| Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...453..616S&db_key=AST
| The Nuclear Energy Sources Powering Bright Infrared-selected Galaxies Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...447..545A&db_key=AST
| An evidence for enhanced star formation rate in IRAS-detected Arakelian galaxies. Not Available
| The extended 12 micron galaxy sample We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.
| A revised catalog of CfA1 galaxy groups in the Virgo/Great Attractor flow field A new identification of groups and clusters in the CfA1 Catalog ofHuchra et al. is presented, using a percolation algorithm to identifydensity enhancements. It is shown that in the resulting catalog,contamination by interlopers is significantly reduced. The Schechterluminosity function is redetermined, including the Malmquist bias.
| KISO survey for ultraviolet-excess galaxies. XV The fifteenth list and identification charts of the ultraviolet-excessgalaxies are presented. These galaxies were detected on the multicolorplates taken with the Kiso Schmidt telescope for 10 survey fields. Inthe sky area of 300 square degrees 544 objects are cataloged down to thephotographic magnitude of about 17.5.
| The far-infrared properties of the CfA galaxy sample. I - The catalog IRAS flux densities are presented for all galaxies in the Center forAstrophysics magnitude-limited sample (mB not greater than 14.5)detected in the IRAS Faint Source Survey (FSS), a total of 1544galaxies. The detection rate in the FSS is slightly larger than in thePSC for the long-wavelength 60- and 100-micron bands, but improves by afactor of about 3 or more for the short wavelength 12- and 25-micronbands. This optically selected sample consists of galaxies which are, onaverage, much less IR-active than galaxies in IR-selected samples. Itpossesses accurate and complete redshift, morphological, and magnitudeinformation, along with observations at other wavelengths.
| A 1.49 GHz atlas of the IRAS Bright Galaxy Sample The VLA has been used in its A-, B-, C-, and D-configurations to make1.49 GHz maps of sources in both the original and revised IRAS BrightGalaxy Samples of strong extragalactic sources selected at a wavelengthof 60 microns. Integrated 1.49 GHz flux densities were obtained from thelowest resolution maps, and maps were made with higher resolution sothat nearly all of the radio sources have been at least partiallyresolved. Only NGC 1377 was not detected at 1.49 GHz. An atlas ofcontour maps, a table of total flux densities plus other radio sourceparameters, and references to published radio maps are given. Since theinfrared and radio continuum brightness distributions of IR-selectedgalaxies are usually similar, these high-resolution radio maps can beused as substitutes for the unavailable IR maps to indicate the sizesand precise locations of the IR-emitting regions.
| Spectrophotometry of Normal Galaxies Nuclei Not Available
| Models for infrared emission from IRAS galaxies The far-infrared spectra of galaxies detected in four wavelength bandsby IRAS have been modeled in terms of a cool disk component, a warmerstarburst component, and a Seyfert component peaking at 25 microns.Although the models are found to fit the observed spectra of non-Seyfertand several Seyfert galaxies, a more complex geometry for the dustdistribution is indicated for NGC 1068 and many other Seyfert galaxies.In some cases, the dust in the narrow-line region has a nonsphericallysymmetric geometry.
| The 12 micron galaxy sample. I - Luminosity functions and a new complete active galaxy sample An all-sky 12 micron flux-limited sample of active galaxies was selectedfrom the IRAS Point Source Catalog. Most of the sample galaxies are inexisting catalogs, and 99 percent have measured redshifts. The 12-micronand the far-infrared luminosity functions of active and normal galaxiesare derived using IRAS co-added data. A total of 22 percent of thesample galaxies harbor active nuclei. The sample consists almost equallyof Seyfert 1, Seyfert 2, and LINER nuclei. The derived luminosityfuctions for Seyfert 1 and Seyfert 2 galaxies are indistinguishable fromthose of the optically selected CfA sample. Thus, 12 micron selection isthe most efficient available technique for finding complete activegalaxy samples.
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|