目录
图像
上传图像
DSS Images Other Images
相关文章
Constraining Dark Matter Halo Profiles and Galaxy Formation Models Using Spiral Arm Morphology. I. Method Outline We investigate the use of spiral arm pitch angles as a probe of diskgalaxy mass profiles. We confirm our previous result that spiral armpitch angles (P) are well correlated with the rate of shear (S) in diskgalaxy rotation curves by using a much larger sample (51 galaxies) thanused previously (17 galaxies). We use this correlation to argue thatimaging data alone can provide a powerful probe of galactic massdistributions out to large look-back times. In contrast to previouswork, we show that observed spiral arm pitch angles are similar whenmeasured in the optical (at 0.4 μm) and the near-infrared (at 2.1μm) with a mean difference of 2.3d+/-2.7d. This is then used tostrengthen the known correlation between P and S using B-band images. Wethen use two example galaxies to demonstrate how an inferred shear ratecoupled with a bulge-disk decomposition model and a Tully-Fisher-derivedvelocity normalization can be used to place constraints on a galaxy'sbaryon fraction and dark matter halo profile. We show that ESO 582-G12,a galaxy with a high shear rate (slightly declining rotation curve) at~10 kpc, favors an adiabatically contracted halo, with high initial NFWconcentration (cvir>16) and a high fraction of halobaryons in the form of stars (~15%-40%). In contrast, IC 2522 has a lowshear rate (rising rotation curve) at ~10 kpc and favorsnonadiabatically contracted models with low NFW concentrations(cvir~=2-8) and a low stellar baryon fraction <10%.
| Low-Luminosity Active Galaxies and Their Central Black Holes Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.
| The structure of galactic disks. Studying late-type spiral galaxies using SDSS Using imaging data from the SDSS survey, we present the g' and r' radialstellar light distribution of a complete sample of ~90 face-on tointermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies. Thesurface brightness profiles are reliable (1 σ uncertainty lessthan 0.2 mag) down to μ27 mag/''. Only ~10% of all galaxies havea normal/standard purely exponential disk down to our noise limit. Thesurface brightness distribution of the rest of the galaxies is betterdescribed as a broken exponential. About 60% of the galaxies have abreak in the exponential profile between 1.5-4.5 times thescalelength followed by a downbending, steeper outer region. Another~30% shows also a clear break between 4.0-6.0 times thescalelength but followed by an upbending, shallower outer region. A fewgalaxies have even a more complex surface brightness distribution. Theshape of the profiles correlates with Hubble type. Downbending breaksare more frequent in later Hubble types while the fraction of upbendingbreaks rises towards earlier types. No clear relation is found betweenthe environment, as characterised by the number of neighbours, and theshape of the profiles of the galaxies.
| The evolution of actively star-forming galaxies in the mid-infrared In this paper we analyze the evolution of actively star-forming galaxiesin the mid-infrared (MIR). This spectral region, characterized bycontinuum emission by hot dust and by the presence of strong emissionfeatures generally ascribed to polycyclic aromatic hydrocarbon (PAH)molecules, is the most strongly affected by the heating processesassociated with star formation and/or active galactic nuclei (AGNs).Following the detailed observational characterization of galaxies in theMIR by the Infrared Space Observatory (ISO), we have updated themodelling of this spectral region in our spectrophotometric modelGRASIL. In the diffuse component we have updated the treatment of PAHsaccording to the model by Li & Draine. As for the dense phase of theinterstellar medium associated with the star-forming regions, themolecular clouds, we strongly decrease the abundance of PAHs as comparedto that in the cirrus, based on the observational evidence of the lackor weakness of PAH bands close to the newly formed stars, possibly dueto the destruction of the molecules in strong ultraviolet fields. Therobustness of the model is checked by fitting near-infrared to radiobroad-band spectra and the corresponding detailed MIR spectra of a largesample of galaxies, at once. With this model, we have analyzed thelarger sample of actively star-forming galaxies by Dale et al. We showthat the observed trends of galaxies in the ISO-IRAS-radio colour-colourplots can be interpreted in terms of the different evolutionary phasesof star formation activity, and the consequent different dominance inthe spectral energy distribution of the diffuse or dense phase of theISM. We find that the observed colours indicate a surprising homogeneityof the starburst phenomenon, allowing only a limited variation of themost important physical parameters, such as the optical depth of themolecular clouds, the time-scale of the escape of young stars from theirfor mation sites, and the gas consumption time-scale. In this paper wedo not attempt to reproduce the far-infrared coolest region in thecolour-colour plots, as we concentrate on models meant to reproduceactive star-forming galaxies, but we discuss possible requirements of amore complex modelling for the coldest objects.
| The Pattern Speeds of 38 Barred Galaxies We estimate the pattern speeds of 38 barred galaxies by simulationmodeling. We construct the gravitational potentials of the galaxies fromnear-IR photometry by assuming that the mass-to-light ratio (M/L) isconstant in the H band and a single pattern speed dominates in thestellar disk. We use the response of gaseous and stellar particle disksto a rigidly rotating potential to determine the pattern speed. If ourassumptions are correct, then the pattern speed depends on themorphological type: the average value of the ratio of the corotationresonance radius to the bar radius, ℛ, increases from about 1.1 intype SB0/a to 1.4 in SBb and 1.7 in SBc. Within the error estimates, allthe bars in galaxies of type SBab or earlier are fast rotators, havingℛ<=1.4, whereas late-type galaxies include both fast and slowrotators.
| Warm, Dense Molecular Gas in the ISM of Starbursts, LIRGs, and ULIRGs The role of star formation in luminous and ultraluminous infraredgalaxies (LIRGs, LIR>=1011 LsolarULIRGs, LIR>=1012 Lsolar) is a hotlydebated issue: while it is clear that starbursts play a large role inpowering the IR luminosity in these galaxies, the relative importance ofpossible enshrouded AGNs is unknown. It is therefore important to betterunderstand the role of star-forming gas in contributing to the infraredluminosity in IR-bright galaxies. The J=3 level of 12CO lies33 K above ground and has a critical density of~1.5×104 cm-3. The 12CO J=3-2line serves as an effective tracer for warm, dense molecular gas heatedby active star formation. Here we report on 12CO J=3-2observations of 17 starburst spiral galaxies, LIRGs, and ULIRGs, whichwe obtained with the Heinrich Hertz Submillimeter Telescope on MountGraham, Arizona. Our main results are as follows. (1) We find a nearlylinear relation between the infrared luminosity and warm, densemolecular gas such that the infrared luminosity increases as the warm,dense molecular gas to the power 0.92; we interpret this to be roughlyconsistent with the recent results of Gao & Solomon. (2) We findLIR/MH2warm,dense ratios ranging from~38 to ~482 Lsolar/Msolar using a modifiedCO-H2 conversion factor of 8.3×1019cm-2 (K km s-1)-1 derived in thispaper.
| The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.
| The orientation parameters and rotation curves of 15 spiral galaxies We analyzed ionized gas motion and disk orientation parameters for 15spiral galaxies. Their velocity fields were measured with the Hαemission line by using the Fabry-Perot interferometer at the 6 mtelescope of SAO RAS. Special attention is paid to the problem ofestimating the position angle of the major axis (PA0) and theinclination (i) of a disk, which strongly affect the derived circularrotation velocity. We discuss and compare different methods of obtainingthese parameters from kinematic and photometric observations, takinginto account the presence of regular velocity (brightness) perturbationscaused by spiral density waves. It is shown that the commonly usedmethod of tilted rings may lead to systematic errors in the estimationof orientation parameters (and hence of circular velocity) being appliedto galaxies with an ordered spiral structure. Instead we recommend usingan assumption of constancy of i and PA0 along a radius, toestimate these parameters. For each galaxy of our sample we presentmonochromatic Hα- and continuum maps, velocity fields of ionizedgas, and the mean rotation curves in the frame of a model of purecircular gas motion. Significant deviations from circular motion withamplitudes of several tens of km s-1 (or higher) are found inalmost all galaxies. The character and possible nature of thenon-circular motion are briefly discussed.Based on observations collected with the 6 m telescope of the SpecialAstrophysical Observatory (SAO) of the Russian Academy of Sciences(RAS), operated under the financial support of the Science Department ofRussia (registration number 01-43).Section 4 and Figs. 6-19 are only avalaible in electronic form athttp://www.edpsciences.org
| Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.
| The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.
| Revised masses of dust and gas of SCUBA Local Universe Survey far-infrared bright galaxies based on a recent CO survey Recent CO measurements of an essentially complete subsample of galaxiesfrom the SCUBA Local Universe Survey (SLUGS) are used to examine theirimplications for dust and gas masses in this sample. Estimates of dustmasses are affected by a contribution to the SCUBA brightnessmeasurements by CO(3-2) emission, and molecular gas masses by the use ofa modified value of the CO-to-H2 conversion factor X. Theaverage dust mass is reduced by 25-38 per cent, which has no bearing onearlier conclusions concerning the shape of the dust mass luminosityfunction derived from the SLUGS. The value of X found from the COsurvey, when applied together with the reduction in dust masses, leadsto lower estimates for the mean gas-to-dust mass ratios, where the gasincludes both H2 and H I. For the CO sample, the mean globalratio is reduced from approximately 430 to about 320-360, but is furtherreduced to values near 50 when applied to the nuclear regions relevantto the CO observations. We discuss these results and suggest that thedifferences between the nuclear and outer regions may simply reflectdifferences in metallicity or the existence of considerable amounts ofunobserved cold dust in the outer regions of these galaxies.
| Determination of the Thickness of Non-Edge-on Disk Galaxies We propose a method to determine the thickness of non-edge-on diskgalaxies from their observed structure of spiral arms, based on thesolution of the truly three-dimensional Poisson's equation for alogarithmic disturbance of density and under the condition where theself-consistency of the density wave theory is no longer valid. Fromtheir measured number of arms, pitch angle and location of the innermostpoint of the spiral arms, we derive and present the thicknesses of 34spiral galaxies.
| Classification of Spectra from the Infrared Space Observatory PHT-S Database We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).
| Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? Infrared (IR) emission features at 3.3, 6.2, 7.7, 8.6, and 11.3 μmare generally attributed to IR fluorescence from (mainly)far-ultraviolet (FUV) pumped large polycyclic aromatic hydrocarbon (PAH)molecules. As such, these features trace the FUV stellar flux and arethus a measure of star formation. We examined the IR spectralcharacteristics of Galactic massive star-forming regions and of normaland starburst galaxies, as well as active galactic nuclei (AGNs) andultraluminous infrared galaxies (ULIRGs). The goal of this study is toanalyze whether PAH features are a good qualitative and/or quantitativetracer of star formation, and hence to evaluate the application of PAHemission as a diagnostic tool in order to identify the dominantprocesses contributing to the infrared emission from Seyfert galaxiesand ULIRGs. We develop a new mid-infrared (MIR)/far-infrared (FIR)diagnostic diagram based on our Galactic sample and compare it to thediagnostic tools of Genzel and coworkers and Laurent and coworkers, withthese diagnostic tools also applied to our Galactic sample. This MIR/FIRdiagnostic is derived from the FIR normalized 6.2 μm PAH flux and theFIR normalized 6.2 μm continuum flux. Within this diagram, theGalactic sources form a sequence spanning a range of 3 orders ofmagnitude in these ratios, ranging from embedded compact H II regions toexposed photodissociation regions (PDRs) and the (diffuse) interstellarmedium (ISM). However, the variation in the 6.2 μm PAHfeature-to-continuum ratio is relative small. Comparison of ourextragalactic sample with our Galactic sources revealed an excellentresemblance of normal and starburst galaxies to exposed PDRs. WhileSeyfert 2 galaxies coincide with the starburst trend, Seyfert 1 galaxiesare displaced by at least a factor of 10 in 6.2 μm continuum flux, inaccordance with general orientation-dependent unification schemes forAGNs. ULIRGs show a diverse spectral appearance. Some show a typical AGNhot dust continuum. More, however, either are starburst-like or showsigns of strong dust obscuration in the nucleus. One characteristic ofthe ULIRGs also seems to be the presence of more prominent FIR emissionthan either starburst galaxies or AGNs. We discuss the observedvariation in the Galactic sample in view of the evolutionary state andthe PAH/dust abundance and discuss the use of PAHs as quantitativetracers of star formation activity. Based on these investigations, wefind that PAHs may be better suited as a tracer of B stars, whichdominate the Galactic stellar energy budget, than as a tracer of massivestar formation (O stars).
| The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies% The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39
| Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595
| Dust masses and star formation in bright IRAS galaxies. Application of a physical model for the interpretation of FIR observations We address the problem of modeling the far-infrared (FIR) spectrum andderiving the star-formation rate (SFR) and the dust mass of spiralgalaxies. We use the realistic physical model of Popescu et al.(\cite{popescu}) to describe the overall ultra-violet (UV), optical andFIR spectral energy distribution (SED) of a spiral galaxy. The modeltakes into account the 3-dimensional old and young stellar distributionsin the bulge and the disk of a galaxy, together with the dust geometry.The geometrical characteristics of the galaxy and the intrinsic opticaland near-infrared spectra are determined by the galaxy's observed K-bandphotometry. The UV part of the spectrum is assumed to be proportional tothe SFR through the use of population synthesis models. By solving theradiative transfer equation, we are able to determine the absorbedenergy, the dust temperature and the resulting FIR spectrum. The modelhas only three free parameters: SFR, dust mass, and the fraction of theUV radiation which is absorbed locally by dense dust in the HII regions.Using this model, we are able to fit well the FIR spectra of 62 brightIRAS galaxies from the ``SCUBA Local Universe Galaxy Survey" of Dunne etal. (\cite{dunne1}). As a result, we are able to determine, amongothers, their SFR and dust mass. We find that, on average, the SFR (inabsolute units), the star-formation efficiency, the SFR surface densityand the ratio of FIR luminosity over the total intrinsic luminosity, arelarger than the respective values of typical spiral galaxies of the samemorphological type. We also find that the mean gas-to-dust mass ratio isclose to the Galactic value, while the average central face-on opticaldepth of these galaxies in the V band is 2.3. Finally, we find a strongcorrelation between SFR or dust mass and observed FIR quantities liketotal FIR luminosity or FIR luminosity at 100 and 850 μm. Thesecorrelations yield well-defined relations, which can be used todetermine a spiral galaxy's SFR and dust-mass content from FIRobservations.
| Vertical Scale Parameter Estimates for 48 Non-edge-on Spiral Galaxies In the first paper of this series, we directly studied the mathematicalforms, symmetry of spiral structure, and the projection of galacticdiscs on the images, and measured the pitch angles of the spiral armsand inclination angles of the galactic discs for 60 spiral galaxies. Inthis second paper, we estimate the vertical scale parameters of 48non-edge-on spiral galaxies based on the method proposed by Peng et al.and on the results given in Paper I. As we know, for edge-on discgalaxies we can obtain the vertical scale parameter from the photometry,once a mathematical form is specified for the vertical lightdistribution. For non-edge-on galaxies, some other methods have to beused. The statistical result was that the vertical scale parameter iscomparable for edge-on and non-edge-on galaxies, although it is obtainedfrom two very different methods.
| CO Molecular Gas in Infrared-luminous Galaxies We present the first statistical survey of the properties of the12CO(1-0) and 12CO(3-2) line emission from thenuclei of a nearly complete subsample of 60 infrared (IR) luminousgalaxies selected from SCUBA Local Universe Galaxy Survey (SLUGS). Thissubsample is flux limited at S60μm>=5.24 Jy with far-IR(FIR) luminosities mostly at LFIR>1010Lsolar. We compare the emission line strengths of12CO(1-0) and (3-2) transitions at a common resolution of~15". The measured 12CO(3-2) to (1-0) line intensity ratiosr31 vary from 0.22 to 1.72, with a mean value of 0.66 for thesources observed, indicating a large spread of the degree of excitationof CO in the sample. These CO data, together with a wide range of dataat different wavelengths obtained from the literature, allow us to studythe relationship between the CO excitation conditions and the physicalproperties of gas/dust and star formation in the central regions ofgalaxies. Our analysis shows that there is a nonlinear relation betweenCO and FIR luminosities, such that their ratioLCO/LFIR decreases linearly with increasingLFIR. This behavior was found to be consistent with theSchmidt law relating star formation rate to molecular gas content, withan index N=1.4+/-0.3. We also find a possible dependence of the degreeof CO gas excitation on the efficiency of star-forming activity. Usingthe large velocity gradient (LVG) approximation to model the observeddata, we investigate the CO-to-H2 conversion factor X for theSLUGS sample. The results show that the mean value of X for the SLUGSsample is lower by a factor of 10 compared to the conventional valuederived for the Galaxy, if we assume the abundance of CO relative toH2, ZCO=10-4. For a subset of 12galaxies with H I maps, we derive a mean total face-on surface densityof H2+HI of about 42 Msolar pc-2 withinabout 2 kpc of the nucleus. This value is intermediate between that ingalaxies like our own and those with strong star formation.
| Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features We present ISOPHOT spectra of the regions 2.5-4.9 μm and 5.8-11.6μm for a sample of 45 disk galaxies from the US Infrared SpaceObservatory Key Project on Normal Galaxies. The galaxies were selectedto span the range in global properties of normal, star-forming diskgalaxies in the local universe. The spectra can be decomposed into threespectral components: (1) continuum emission from stellar photospheres,which dominates the near-infrared (NIR; 2.5-4.9 μm) spectral region;(2) a weak NIR excess continuum, which has a color temperature of~103 K, carries a luminosity of a few percent of the totalfar-infrared (FIR) dust luminosity LFIR and most likelyarises from the interstellar medium (ISM); and (3) the well-known broademission features at 6.2, 7.7, 8.6, and 11.3 μm, which are generallyattributed to aromatic carbon particles. These aromatic features inemission (AFEs) dominate the mid-infrared (MIR; 5.8-11.6 μm) part ofthe spectrum and resemble the so-called type A spectra observed in manynonstellar sources and the diffuse ISM in our own Galaxy. The fewnotable exceptions include NGC 4418, where a dust continuum replaces theAFEs in MIR, and NGC 1569, where the AFEs are weak and the strongestemission feature is [S IV] 10.51 μm. The relative strengths of theAFEs vary by 15%-25% among the galaxies. However, little correlation isseen between these variations and either IRAS 60 μm/100 μm fluxdensity ratio R(60/100) or the FIR/blue luminosity ratioLFIR/LB, two widely used indicators of the currentstar formation activity, suggesting that the observed variations are nota consequence of the radiation field differences among the galaxies. Wedemonstrate that the NIR excess continuum and AFE emission arecorrelated, suggesting that they are produced by similar mechanisms andsimilar (or the same) material. On the other hand, as the current starformation activity increases, the overall strengths of the AFEs and theNIR excess continuum drop significantly with respect to that of the FIRemission from large dust grains. In particular, the summed luminosity ofthe AFEs falls from ~0.2 LFIR for the most ``IR-quiescent''galaxies to ~0.1 LFIR for the most ``IR-active'' galaxies.This is likely a consequence of the preferential destruction in intenseradiation fields of the small carriers responsible for the NIR/AFEemission.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries, France, Germany, theNetherlands, and the United Kingdom) and with the participation of ISASand NASA.
| The IRAS Revised Bright Galaxy Sample IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.
| The distribution of atomic gas and dust in nearby galaxies - I. Presentation of matched-resolution VLA H I and SCUBA 850-μm maps We present matched-resolution VLA HI and SCUBA 850-μm maps of 20IRAS-bright galaxies. Of the galaxies observed, two were not detected inHI and two were detected in absorption. The HI distributions of thegalaxies have a range of morphologies. Some of the systems appear HIdeficient in the central regions which could be due to a high conversionrate of HI into molecules or HI absorption. In contrast to the HI, the850-μm emission has a smooth distribution which is concentratedtowards the optical centre of each galaxy. We also find evidence for850-μm emission extending to the periphery of the optical disc insome of the galaxies. Finally, we note that the relative lack of850-μm emission when compared with HI does not necessarily mean thatthe atomic gas and dust do not have similar mass distributions.
| Bar Galaxies and Their Environments The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.
| The Visibility of Galactic Bars and Spiral Structure at High Redshifts We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.
| Hot dust in normal star-forming galaxies: JHKL' photometry of the ISO Key Project sample We present JHK and 3.8 mu m (L') photometry of 26 galaxies in theInfrared Space Observatory (ISO) Normal Galaxy Key Project (KP) sampleand of seven normal ellipticals with the aim of investigating the originof the 4 mu m emission. The majority of the KP galaxies, and all theellipticals, have K-L<~ 1.0, consistent with stellar photospheresplus moderate dust extinction. Ten of the 26 KP galaxies have K-L>~1.0, corresponding to a flat or rising 4 mu m continuum, consistent withsignificant emission from hot dust at 600-1000 K. K-L is anticorrelatedwith ISO flux ratio F6.75/F15, weakly correlatedwith line ratio [O I]/[C II], but not with [C II]/FIR or IRAS ratioF60/F100. Photodissociation-region models forthese galaxies show that the hot dust responsible for red K-L resides inregions of high pressure and intense far-ultraviolet radiation field.Taken together, these results suggest that star formation in normalstar-forming galaxies can assume two basic forms: an ``active'',relatively rare, mode characterized by hot dust, suppressed AromaticFeatures in Emission (AFEs), high pressure, and intense radiation field;and the more common ``passive'' mode that occurs under more quiescentphysical conditions, with AFEs, and without hot dust. The occurrence ofthese modes appears to only weakly depend on the star-formation rate perunit area. Passive star formation over large scales makes up the bulk ofstar-forming activity locally, while the ``active'' regime may dominateat high redshifts. Based on data obtained at TIRGO, Gornergrat,Switzerland.
| Local velocity field from sosie galaxies. I. The Peebles' model Pratton et al. (1997) showed that the velocity field around clusterscould generate an apparent distortion that appears as tangentialstructures or radial filaments. In the present paper we determine theparameters of the Peebles' model (1976) describing infall of galaxiesonto clusters with the aim of testing quantitatively the amplitude ofthis distortion. The distances are determined from the concept of sosiegalaxies (Paturel 1984) using 21 calibrators for which the distanceswere recently calculated from two independent Cepheid calibrations. Weuse both B and I-band magnitudes. The Spaenhauer diagram method is usedto correct for the Malmquist bias. We give the equations for theconstruction of this diagram. We analyze the apparent Hubble constant indifferent regions around Virgo and obtain simultaneously the Local Groupinfall and the unperturbed Hubble constant. We found:[VLG-infall = 208 ± 9 km s-1] [\log H =1.82 ± 0.04 (H ≈ 66 ± 6 km s-1Mpc-1).] The front side and backside infalls can be seenaround Virgo and Fornax. In the direction of Virgo the comparison ismade with the Peebles' model. We obtain: [vinfall} =CVirgo/r0.9 ± 0.2] withCVirgo=2800 for Virgo and CFornax=1350 for Fornax,with the adopted units (km s-1 and Mpc). We obtain thefollowing mean distance moduli: [μVirgo=31.3 ± 0.2(r=18 Mpc )] [μFornax=31.7 ± 0.3 (r=22 Mpc). ] Allthese quantities form an accurate and coherent system. Full Table 2 isonly available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/57
| A Method of Obtaining the Pitch Angle of Spiral Arms and the Inclination of Galactic Discs We investigate the mathematical form, the symmetry of spiral structureand the projected images of galactic discs. The measured pitch angles ofspiral arms and inclination angles of galactic discs for 60 spiralgalaxies are presented. The global spiral structure is emphasized in thestudy. It is found that, except for small-scale distortions, the spiralarms of those galaxies that were classified as AC 12 in the armclassification system of Elmegreen & Elmegreen, can be representedby the logarithmic spiral form.
| Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium The most important cooling lines of the neutral interstellar medium(ISM) lie in the far-infrared (FIR). We present measurements by theInfrared Space Observatory Long Wavelength Spectrometer of seven linesfrom neutral and ionized ISM of 60 normal, star-forming galaxies. Thegalaxy sample spans a range in properties such as morphology, FIR colors(indicating dust temperature), and FIR/blue ratios (indicating starformation activity and optical depth). In two-thirds of the galaxies inthis sample, the [C II] line flux is proportional to FIR dust continuum.The other one-third show a smooth decline inL[CII]/LFIR with increasing Fν(60μm)/Fν(100 μm) and LFIR/LB,spanning a range of a factor of more than 50. Two galaxies at the warmand active extreme of the range haveL[CII]/LFIR<2×10-4 (3 σupper limit). This is due to increased positive grain charge in thewarmer and more active galaxies, which leads to less efficient heatingby photoelectrons from dust grains. The ratio of the two principalphotodissociation region (PDR) cooling linesL[OI]/L[CII] shows a tight correlation withFν(60 μm)/Fν(100 μm), indicating thatboth gas and dust temperatures increase together. We derive atheoretical scaling between [N II] (122 μm) and [C II] from ionizedgas and use it to separate [C II] emission from neutral PDRs and ionizedgas. Comparison of PDR models of Kaufman et al. with observed ratios of(1) L[OI]/L[CII] and(L[CII]+L[OI])/LFIR and (2)L[OI]/LFIR and Fν(60μm)/Fν(100 μm) yields far-UV flux G0 andgas density n. The G0 and n values estimated from the twomethods agree to better than a factor of 2 and 1.5, respectively, inmore than half the sources. The derived G0 and n correlatewith each other, and G0 increases with n asG0~nα, where α~1.4 . We interpret thiscorrelation as arising from Strömgren sphere scalings if much ofthe line and continuum luminosity arises near star-forming regions. Thehigh values of PDR surface temperature (270-900 K) and pressure(6×104-1.5×107 K cm-3)derived also support the view that a significant part of grain and gasheating in the galaxies occurs very close to star-forming regions. Thedifferences in G0 and n from galaxy to galaxy may be due todifferences in the physical properties of the star-forming clouds.Galaxies with higher G0 and n have larger and/or denserstar-forming clouds.
| The impact of bars on the mid-infrared dust emission of spiral galaxies: global and circumnuclear properties We study the mid-infrared properties of a sample of 69 nearby spiralgalaxies, selected to avoid Seyfert activity contributing a significantfraction of the central energetics, or strong tidal interaction, and tohave normal infrared luminosities. These observations were obtained withISOCAM, which provides an angular resolution of the order of 10arcsec(half-power diameter of the point spread function) and low-resolutionspectro-imaging information. Between 5 and 18 mu m, we mainly observetwo dust phases, aromatic infrared bands and very small grains, both outof thermal equilibrium. On this sample, we show that the globalF15/F_7 colors of galaxies are very uniform, the onlyincrease being found in early-type strongly barred galaxies, consistentwith previous IRAS studies. The F15/F_7 excesses areunambiguously due to galactic central regions where bar-inducedstarbursts occur. However, the existence of strongly barred early-typegalaxies with normal circumnuclear colors indicates that therelationship between a distortion of the gravitational potential and acentral starburst is not straightforward. As the physical processes atwork in central regions are in principle identical in barred andunbarred galaxies, and since this is where the mid-infrared activity ismainly located, we investigate the mid-infrared circumnuclear propertiesof all the galaxies in our sample. We show how surface brightnesses andcolors are related to both the available molecular gas content and themean age of stellar populations contributing to dust heating. Therefore,the star formation history in galactic central regions can beconstrained by their position in a color-surface brightness mid-infrareddiagram. Based on observations with ISO, an ESA project with instrumentsfunded by ESA Member States (especially the PI countries: France,Germany, the Netherlands and the UK) and with the participation of ISASand NASA.
| The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|