目录
图像
上传图像
DSS Images Other Images
相关文章
Near-Infrared Imaging Observations of the N159/N160 Complex in the Large Magellanic Cloud: Large Clusters of Herbig Ae/Be Stars and Sequential Cluster Formation We have carried out deep near-infrared imaging observations of theN159/N160 star-forming region in the Large Magellanic Cloud. We observedan area of ~380 arcmin2 (~80,000 pc2 at thedistance of the LMC) in the J, H, and Ks bands. Theobservations are deep enough to detect Herbig Ae/Be stars down to ~3Msolar in the LMC. We discovered a total of 338 and 464candidate Herbig Ae/Be and OB stars, respectively, based on thenear-infrared colors and magnitudes. The Herbig Ae/Be candidatescomprise 10 clusters, the OB star candidates 13. We discovered anembedded Herbig Ae/Be cluster in the N159 East giant molecular cloud(GMC) and a Herbig Ae/Be cluster at the northeast tip of the N159 SouthGMC. Together with two neighboring H II regions, the Herbig Ae/Becluster at the tip of the N159S GMC provides a hint of the beginning ofsequential cluster formation in N159S. The spatial distributions of theHerbig Ae/Be and OB clusters, in conjunction with previously knownoptical clusters and embedded massive stars, indicate (1) sequentialcluster formation within each of the N159 and N160 star-forming regionsand (2) large-scale sequential cluster formation over the entireobserved region from N160 to N159S. Possible triggers for thelarge-scale cluster formation are the supergiant shell SGS 19 and anexpanding superbubble. Some of the Herbig Ae/Be clusters in theN159/N160 complex are significantly larger in spatial extent thanpre-main-sequence clusters of similar age in the Milky Way. Highlyturbulent gas motion in the LMC is probably responsible for forming thelarge young clusters.
| OB stellar associations in the Large Magellanic Cloud: Survey of young stellar systems The method developed by Gouliermis et al. (\cite{Gouliermis00}, PaperI), for the detection and classification of stellar systems in the LMC,was used for the identification of stellar associations and openclusters in the central area of the LMC. This method was applied on thestellar catalog produced from a scanned 1.2 m UK Schmidt Telescope Platein U with a field of view almost 6\fdg5 x 6\fdg5, centered on the Bar ofthis galaxy. The survey of the identified systems is presented herefollowed by the results of the investigation on their spatialdistribution and their structural parameters, as were estimatedaccording to our proposed methodology in Paper I. The detected openclusters and stellar associations show to form large filamentarystructures, which are often connected with the loci of HI shells. Thederived mean size of the stellar associations in this survey was foundto agree with the average size found previously by other authors, forstellar associations in different galaxies. This common size of about 80pc might represent a universal scale for the star formation process,whereas the parameter correlations of the detected loose systems supportthe distinction between open clusters and stellar associations.
| Spectrophotometry of six high-excitation compact HII regions in the Magellanic Clouds Series of CCD long-slit spectra have been obtained in the 3600 - 10000Å range, with the ESO 1.5m telescope, for the six brightestcompact HII regions in the LMC and SMC: N 11A, N 160 A1-A2 and N 88A, N81 and N 26A-B, respectively. For each region the spectral type of itscomplex exciting source is given. From the emission-line intensities wehave derived the gas electron density and temperature, and computed thechemical abundances of He, O, N, Ne, S, and Ar, which we compare withthe ones found for other HII regions in the Magellanic Clouds.
| A statistical study of binary and multiple clusters in the LMC Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547
| The Effects of Dust in Simple Environments: Large Magellanic Cloud H II Regions We investigate the effects of dust on Large Magellanic Cloud (LMC)H II region spectral energy distributions usingarcminute-resolution far-ultraviolet (FUV), Hα, far-infrared(FIR), and radio images. Widely used indicators of the amount of lightlost to dust (attenuation) at Hα and in the FUV correlate witheach other, although often with substantial scatter. There are twointeresting systematic discrepancies: First, Hα attenuationsestimated from the Balmer decrement are lower than those estimated fromthe Hα-to-thermal radio luminosity ratio. Our data, at this stage,cannot unambiguously identify the source of this discrepancy. Second,the attenuation at 1500 Å and the UV spectral slope, β,correlate, although the slope and scatter are substantially differentfrom the correlation first derived for starbursting galaxies by Calzettiet al. Combining our result with those of Meurer et al. forultraluminous infrared galaxies and Calzetti et al. for starburstinggalaxies, we conclude that no single relation between β and 1500Å attenuation is applicable to all star-forming systems.
| A CO Survey of the LMC with NANTEN: III. Formation of Stellar Clusters and Evolution of Molecular Clouds In order to elucidate star formation in the LMC, we made a completestudy of CO clouds with NANTEN. In the present paper, we compare 55giant molecular clouds (GMCs), whose physical quantities were welldetermined, with young objects, such as young stellar clusters and HIIregions. We find that the GMCs are actively forming stars and clusters;23 and 40 are found to be associated with the clusters and the HIIregions, respectively. The clusters associated with the GMCs aresignificantly young; ~ 85% of them are younger than ~ 10 Myr. Inaddition, compact groups of the young clusters are often found at thepeak position of the GMCs, e.g., N 159 and N 44, while much loosergroups are away from the GMCs. This suggests that the clusters areformed in groups and disperse as they become old. The distributions ofthe CO, [CII], and UV indicate that the GMCs are likely to be rapidlydissipated within several Myr due to UV photons from the clusters. Wealso estimate the evolutionary time scale of the GMCs; they form starsin a few Myr after their birth, and form clusters during the next fewMyr, and are dissipated in the subsequent few Myr.
| The Supergiant Shell LMC 2. I. The Kinematics and Physical Structure LMC 2 has the brightest, most coherent filamentary structure of allknown supergiant shells in the Large Magellanic Cloud. The opticalemission-line images show active star formation regions along thewestern edge and long filaments to the east. ROSAT PSPC and HRI imagesshow bright X-ray emission from within the shell boundary, indicatingthe presence of hot gas. Counterintuitively, neither high-resolutionechelle spectra in the Hα line nor aperture synthesis H I 21 cmemission-line observations show LMC 2 to have the kinematics expected ofan expanding shell. Rather, LMC 2 appears to consist of hot gas confinedbetween H I sheets. The interior surfaces of these sheets are ionized bythe UV flux of massive stars in the star formation regions along theperiphery of LMC 2, while the heating is provided by outflows of hot gasfrom the star formation regions and by SNRs interior to LMC 2. We havecompared LMC 2 to other supergiant shells in the LMC and in more distantgalaxies. When the spatial resolution of our data are degraded, we findthat LMC 2 resembles supergiant shells observed at a distance of 4 Mpcthat have previously been interpreted as expanding shells. Therefore,great caution should be exercised in the analysis and interpretation ofthe kinematics of distant supergiant shells to prevent overestimates oftheir velocities and total kinetic energies.
| Star Clusters Driven to Form by Strong Collisions Between Gas Clouds in High-Velocity Random Motion Abstract image available at:http://adsabs.harvard.edu/abs/1997AJ....113..249F
| Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.
| A catalogue of binary star cluster candidates in the Large Magellanic Cloud A photographic atlas of close pairs of star clusters in the LargeMagellanic Cloud is presented here. The criterion for inclusion ofcluster pairs in the atlas was an upper limit of 18.7 pc for theprojected separation between the centers of the clusters in each pair.Accurate coordinates for the clusters, the projected separations andestimates of the diameters and positional angles are given and some ofthe global properties of the cluster-pair population of the LMC arediscussed. It is found that the individual clusters in pairspreferentially have nearly equal sizes.
| Binary star clusters in the Large Magellanic Cloud In a survey of the LMC cluster system, double clusters with acenter-to-center separation of less than 1.3 arcmin (18 pc) have beenidentified. It is inferred that a considerable fraction of these doubleclusters must be binaries since the calculated projection effects canaccount for only 31 of them. This inference is strongly supported by thefact that the ages available for some of the culsters of the sample (asdetermined from UBV photometry) are less than the computed times ofmerger or disruption of the binary cluster system. Furthermore, thespace distribution of these pairs indicates that these clusters belongto a very young or young population.
| Age determination of extragalactic H II regions The H II region evolution models of Copetti et al. (1984) were comparedwith observational data of H II regions in the Magellanic Clouds, M 33,M 101 and of 'isolated extragalactic H II regions'. IMF with chi = 3 or2.5 are inconsistent with a large number of H II regions. The moreuniform age distribution of isolated extragalactic H II regions obtainedthrough an IMF with chi = 2 suggests that this value is more realisticthan chi = 1 or 1.5. The H II region age estimates indicate a burst ofstar formation about 5.5 + or - 1.0 10 to the -6th yr ago in the LMC andabout 2.3 + or - 0.9 x 10 to the 6th yr ago in the SMC. The observedforbidden O III/H-beta gradient in M 33 and M 101 must be caused bycolor temperature variation of the radiation ionizing the H II regions.
| Catalogues of Hα-EMISSION Stars and Nebulae in the Magellanic Clouds. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1956ApJS....2..315H&db_key=AST
| Red supergiants in the Large Magellanic Cloud. Abstract image available at:http://adsabs.harvard.edu/abs/1956MNRAS.116..587F
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|