目录
图像
上传图像
DSS Images Other Images
相关文章
The ISO LWS high-resolution spectral survey towards Sagittarius B2 A full spectral survey was carried out towards the giant molecular cloudcomplex, Sagittarius B2 (SgrB2), using the Infrared Space Observatory(ISO) Long Wavelength Spectrometer (LWS) Fabry-Pérot mode. Thisprovided complete wavelength coverage in the range 47-196μm(6.38-1.53THz) with a spectral resolution of 30-40kms-1. Thisis a unique data set covering wavelengths inaccessible from the ground.It is an extremely important region of the spectrum as it contains boththe peak of the thermal emission from dust, and crucial spectral linesof key atomic (OI, CII, OIII, NII and NIII) and molecular species(NH3, NH2, NH, H2O, OH,H3O+, CH, CH2, C3, HF andH2D+). In total, 95 spectral lines have beenidentified and 11 features with absorption depth greater than 3σremain unassigned. Most of the molecular lines are seen in absorptionagainst the strong continuum, whereas the atomic and ionic lines appearin emission (except for absorption in the OI 63μm and CII 158μmlines). SgrB2 is located close to the Galactic Centre and so many of thefeatures also show a broad absorption profile due to material locatedalong the line of sight. A full description of the survey data set isgiven with an overview of each detected species and final line lists forboth assigned and unassigned features.Based on observations with Infrared Space Observatory (ISO), an ESAproject with instruments funded by ESA Member States (especially the PIcountries: France, Germany, the Netherlands and the United Kingdom) withthe participation of ISAS and NASA.E-mail: e.t.polehampton@rl.ac.uk
| White dwarf masses derived from planetary nebula modelling Aims.We compare the mass distribution of central stars of planetarynebulae (CSPNe) with those of their progeny, white dwarfs (WD). Methods: We use a dynamical method to measure masses with an uncertaintyof 0.02 M_ȯ. Results: The CSPN mass distribution is sharplypeaked at 0.61~M_ȯ. The WD distribution peaks at lower masses(0.58~M_ȯ) and shows a much broader range of masses. Some of thedifference can be explained if the early post-AGB evolution is fasterthan predicted by the Blöcker tracks. Between 30 and 50 per cent ofWD may avoid the PN phase because they have too low a mass. However, thediscrepancy cannot be fully resolved and WD mass distributions may havebeen broadened by observational or model uncertainties.Data is only available in electronic form at http://www.aanda.org
| An Atlas of [N II] and [O III] Images and Spectra of Planetary Nebulae We present an atlas of Hubble Space Telescope images and ground-based,long-slit, narrowband spectra centered on the 6584 Å line of [NII] and the 5007 Å line of [O III]. The spectra were obtained fora variety of slit positions across each target (as shown on the images)in an effort to account for nonspherical nebular geometries in a robustmanner. We have extended the prolate ellipsoidal shell model originallydevised by Aaquist, Zhang, and Kwok to generate synthetic images, aswell as long-slit spectra. Using this model, we have derived basicparameters for the subsample of PNe that present ellipsoidal appearancesand regular kinematic patterns. We find differences between ourparameters for the target PNe as compared to those of previous studies,which we attribute to increased spatial resolution for our image dataand the inclusion of kinematic data in the model fits. The data andanalysis presented in this paper can be combined with detections ofnebular angular expansion rates to determine precise distances to the PNtargets.
| Chemical abundances in planetary nebulae and stellar evolution. I will review basic aspects of galactic Planetary Nebulae focussing onstatus of art on their chemical abundances and relationship with thestellar evolution theory.
| Polycyclic aromatic hydrocarbon emission bands in selected planetary nebulae: a study of the behaviour with gas phase C/O ratio Airborne and space-based low-resolution spectroscopy in the 1980sdiscovered tantalizing quantitative relationships between the gas phaseC/O abundance ratio in planetary nebulae (PNe) and the fractions oftotal far-infrared (FIR) luminosity radiated by the 7.7- and 11.3-μmbands (the C = C stretch and C-H bend, respectively), of polycyclicaromatic hydrocarbons (PAHs). Only a very small sample of nebulae wasstudied in this context, limited by airborne observations of the7.7-μm band, or the existence of adequate IRAS Low ResolutionSpectrometer data for the 11.3-μm band. To investigate these trendsfurther, we have expanded the sample of planetaries available for thisstudy using Infrared Space Observatory (ISO) low-resolution spectrasecured with the Short Wavelength Spectrometer and the Long WavelengthSpectrometer. The new sample of 43 PNe, of which 17 are detected in PAHemission, addresses the range from C/O = 0.2-13 with the objective oftrying to delineate the pathways by which carbon dust grains might haveformed in planetaries. For the 7.7-μm and 11.3-μm bands, weconfirm that the ratio of band strength to total infrared (IR)luminosity is correlated with the nebular C/O ratio. Expressed inequivalent width terms, the cut-on C/O ratio for the 7.7-μm band isfound to be 0.6+0.2-0.4, in good accord with thatfound from sensitive ground-based measurements of the 3.3-μ band.
| The distances of less-evolved planetary nebulae: a further test of statistical distance scales It has recently been pointed out that a number of the methods used todetermine planetary nebulae (PNe) distances may be appreciably in error.Whilst the scales of Zhang (1995), Bensby & Lundstrom (2001) andothers are appropriate for higher radio brightness temperaturesTB, those of Phillips and Daub are more relevant whereTB is small.We note, in the following, that the absolute bolometric magnitudes ofless-evolved PNe are likely to be similar. The mean value of can therefore be used to constrain PNe distancesD, and confirm the distance scales for higher TB outflows. Wehave used this procedure to evaluate distances to a further 47 PNe, andwe find that the mean values of are consistent with those ofCahn, Kaler & Stanghellini (1992), Zhang (1995), Phillips et al.(2004) and van de Steene & Zijlstra (1995). They are, as expected,inconsistent with the lower TB scale of Phillips (2002a).
| The Chemical Composition of Galactic Planetary Nebulae with Regard to Inhomogeneity in the Gas Density in Their Envelopes The results of a study of the chemical compositions of Galacticplanetary nebulae taking into account two types of inhomogeneity in thenebular gas density in their envelopes are reported. New analyticalexpressions for the ionization correction factors have been derived andare used to determine the chemical compositions of the nebular gas inGalactic planetary nebulae. The abundances of He, N, O, Ne, S, and Arhave been found for 193 objects. The Y Z diagrams for various Heabundances are analyzed for type II planetary nebulae separately andjointly with HII regions. The primordial helium abundance Y p andenrichment ratio dY/dZ are determined, and the resulting values arecompared with the data of other authors. Radial abundance gradients inthe Galactic disk are studied using type II planetary nebulae.
| Helium recombination spectra as temperature diagnostics for planetary nebulae Electron temperatures derived from the HeI recombination line ratios,designated Te(HeI), are presented for 48 planetary nebulae(PNe). We study the effect that temperature fluctuations inside nebulaehave on the Te(HeI) value. We show that a comparison betweenTe(HeI) and the electron temperature derived from the Balmerjump of the HI recombination spectrum, designated Te(HI),provides an opportunity to discriminate between the paradigms of achemically homogeneous plasma with temperature and density variations,and a two-abundance nebular model with hydrogen-deficient materialembedded in diffuse gas of a `normal' chemical composition (i.e.~solar), as the possible causes of the dichotomy between the abundancesthat are deduced from collisionally excited lines and those deduced fromrecombination lines. We find that Te(HeI) values aresignificantly lower than Te(HI) values, with an averagedifference of = 4000 K. Theresult is consistent with the expectation of the two-abundance nebularmodel but is opposite to the prediction of the scenarios of temperaturefluctuations and/or density inhomogeneities. From the observeddifference between Te(HeI) and Te(HI), we estimatethat the filling factor of hydrogen-deficient components has a typicalvalue of 10-4. In spite of its small mass, the existence ofhydrogen-deficient inclusions may potentially have a profound effect inenhancing the intensities of HeI recombination lines and thereby lead toapparently overestimated helium abundances for PNe.
| Unresolved Hα Enhancements at High Galactic Latitude in the WHAM Sky Survey Maps We have identified 85 regions of enhanced Hα emission at|b|>10deg subtending approximately 1° or less on theWisconsin Hα Mapper (WHAM) sky survey. These high-latitude ``WHAMpoint sources'' have Hα fluxes of 10-11-10-9ergs cm-2 s-1, radial velocities within about 70km s-1 of the LSR, and line widths that range from less than20 to about 80 km s-1 (FWHM). Twenty-nine of theseenhancements are not identified with either cataloged nebulae or hotstars and appear to have kinematic properties that differ from thoseobserved for planetary nebulae. Another 14 enhancements are near hotevolved low-mass stars that had no previously reported detections ofassociated nebulosity. The remainder of the enhancements are catalogedplanetary nebulae and small, high-latitude H II regions surroundingmassive O and early B stars.
| Some implications of the introduction of scattered starlight in the spectrum of reddened stars This paper presents new investigations on coherent scattering in theforward direction (orders of magnitude; conservation of energy;dependence of scattered light on geometry and wavelength), and on howscattered light contamination in the spectrum of reddened stars ispossibly related to as yet unexplained observations (the diminution ofthe 2200 Å bump when the obscuring material is close to the star,the difference between Hipparcos and photometric distances). This paperthen goes on to discuss the fit of the extinction curve, a possible roleof extinction by the gas in the far-UV, and the reasons of theinadequacy of the Fitzpatrick and Massa [ApJSS, 72 (1990) 163] fit.
| A reexamination of electron density diagnostics for ionized gaseous nebulae We present a comparison of electron densities derived from opticalforbidden line diagnostic ratios for a sample of over a hundred nebulae.We consider four density indicators, the [O II]λ3729/λ3726, [S II] λ6716/λ6731, [Cl III]λ5517/λ5537 and [Ar IV] λ4711/λ4740 doubletratios. Except for a few H II regions for which data from the literaturewere used, diagnostic line ratios were derived from our own high qualityspectra. For the [O II] λ3729/λ3726 doublet ratio, we findthat our default atomic data set, consisting of transition probabilitiesfrom Zeippen (\cite{zeippen1982}) and collision strengths from Pradhan(\cite{pradhan}), fit the observations well, although at high electrondensities, the [O II] doublet ratio yields densities systematicallylower than those given by the [S II] λ6716/λ6731 doubletratio, suggesting that the ratio of transition probabilities of the [OII] doublet, A(λ3729)/A(λ3726), given by Zeippen(\cite{zeippen1982}) may need to be revised upwards by approximately 6per cent. Our analysis also shows that the more recent calculations of[O II] transition probabilities by Zeippen (\cite{zeippen1987a}) andcollision strengths by McLaughlin & Bell (\cite{mclaughlin}) areinconsistent with the observations at the high and low density limits,respectively, and can therefore be ruled out. We confirm the earlierresult of Copetti & Writzl (\cite{copetti2002}) that the [O II]transition probabilities calculated by Wiese et al. (\cite{wiese}) yieldelectron densities systematically lower than those deduced from the [SII] λ6716/λ6731 doublet ratio and that the discrepancy ismost likely caused by errors in the transition probabilities calculatedby Wiese et al. (\cite{wiese}). Using our default atomic data set for [OII], we find that Ne([O II]) Ne([S II]) ≈Ne([Cl III])< Ne([Ar IV]).
| Chemical abundances of planetary nebulae from optical recombination lines - II. Abundances derived from collisionally excited lines and optical recombination lines In Paper I, we presented spectrophotometric measurements of emissionlines from the ultraviolet (UV) to the far-infrared for 12 Galacticplanetary nebulae (PNe) and derived nebular thermal and densitystructures using a variety of plasma diagnostics. The measurements andplasma diagnostic results are used in the current paper to determineelemental abundances in these nebulae. Abundance analyses are carriedout using both strong collisionally excited lines (CELs) and weakoptical recombination lines (ORLs) from heavy element ions.Assuming electron temperatures and densities derived from HIrecombination spectra (line and continuum), we are able to determine theORL C abundance relative to hydrogen for all the PNe in our sample, Nand O abundances for 11 of them and Ne abundances for nine of them. Inall cases, ORL abundances are found to be systematically higher than thecorresponding values deduced from CELs. In NGC 40, the discrepancybetween the abundances derived from the two types of emission linereaches a factor of 17 for oxygen. For the other 10 PNe, thediscrepancies for oxygen vary from 1.6 to 3.1. In general, collisionallyexcited infrared fine-structure lines, which have excitation energiesless than 103 K and consequently emissivities that areinsensitive to electron temperature and temperature fluctuations, yieldionic abundances comparable to those derived from optical/UV CELs. For agiven nebula, the discrepancies between the ORL and CEL abundances areof similar magnitude for different elements. In other words, relativeabundance ratios such as C/O, N/O and Ne/O deduced from the traditionalmethod based on strong CELs are comparable to those yielded by ORLs, fora wide range of ORL to CEL oxygen abundance ratios, varying from nearunity to over a factor of 20.We have also determined ORL abundances relative to hydrogen for thethird-row element magnesium for 11 nebulae in our sample. In strongcontrast to the cases for second-row elements, Mg abundances derivedfrom the MgII 3d-4f λ4481 ORL are nearly constant for all the PNeanalysed so far and agree within the uncertainties with the solarphotospheric value.In accordance with results from previous studies, the ORL to CELabundance ratio is correlated with the difference between the electrontemperatures derived from the [OIII] forbidden-line ratio, on the onehand, and from the hydrogen recombination Balmer discontinuity, on theother. We find that the discrepancy between the ORL and CEL abundancesis correlated with nebular absolute diameter, surface brightness, theelectron density derived from [SII] CELs, and excitation class. Theresults confirm that the dichotomy of temperatures and heavy elementalabundances determined from the two types of emission line, which hasbeen widely observed in PNe, is a strong function of nebular evolution,as first pointed out by Garnett and Dinerstein.Our analyses show that temperature fluctuations and/or densityinhomogeneities are incapable of explaining the large discrepanciesbetween the heavy elemental abundances and electron temperaturesdetermined from the two types of emission line. Our analyses support thebi-abundance model of Liu et al., who have proposed that PNe containanother previously unseen component of ionized gas which, highlyenriched in heavy elements, has an electron temperature of<~103 K and emits strongly in recombination lines but notin CELs. Our determinations of low average emission temperatures fromthe observed line intensity ratios of HeI and OII ORLs lend furthersupport to this scenario.
| Chemical abundances of planetary nebulae from optical recombination lines - I. Observations and plasma diagnostics We have obtained deep optical spectra of medium resolution for a sampleof 12 Galactic planetary nebulae (PNe). Optical recombination lines(ORLs) from carbon, nitrogen and oxygen have been detected in 11 of themand neon ORLs in nine of them. All spectra were obtained by scanning along slit across the nebular surface, yielding relative line intensitiesfor the entire nebula that are suitable for comparison with integratedline fluxes measured in other wavelength regions using space-bornefacilities, such as the Infrared Space Observatory (ISO) and theInternational Ultraviolet Explorer (IUE). For 11 PNe, ISO infraredspectra between 2.4 and 197 μm are available, most of them taken byourselves, plus a Kuiper Airborne Observatory (KAO) infrared spectrum ofNGC 6210. IUE ultraviolet (UV) spectra are available for all nebulaeexcept one in our sample. The UV, optical and infrared spectra have beencombined to study nebular thermal and density structures and todetermine elemental abundances.We have determined UV to optical extinction curves towards these PNe byexamining observed fluxes of HI and HeII recombination lines, radiofree-free continuum flux density, and UV to optical nebular continua.For 11 PNe in our sample, the derived optical reddening curves are foundto be consistent with the standard Galactic extinction law for atotal-to-selective extinction ratio, R≡A(V)/EB-V= 3.1.However, the optical extinction curve towards Hu 1-2 yields R= 2.0. TheUV extinction towards Hu 1-2 and NGC 6572 is also found to be muchsteeper than the standard Galactic reddening law. In contrast, the UVextinction curve along the sight lines towards NGC 6210 is found to bemuch shallower, although in the latter case the uncertainties involvedare quite large.Electron temperatures and densities have been derived using a variety ofdiagnostic ratios of collisionally excited lines (CELs) in the UV,optical and infrared. The results show clear stratifications, both intemperature and density. Lines emitted by ions formed in regions ofhigher ionization degree yield higher temperatures than lines arisingfrom regions of lower ionization degree, while densities deduced fromratios of infrared diagnostic CELs of low critical densities, such asthe [OIII] 88-μm/52-μm ratio, are systematically lower than thosederived from UV and optical diagnostic lines, which in general have muchhigher critical densities than the infrared fine-structure lines.Electron temperatures have also been derived from the ratio of thenebular continuum Balmer discontinuity to H 11 for 11 PNe. For four ofthese, the Balmer jump temperatures are more than 1000 K lower thanvalues derived from the [OIII] optical collisionally excited diagnosticline ratio. With a difference of 3580 K, NGC 40 has the lowest Balmerjump temperature relative to the [OIII] optical forbidden-linetemperature. High-order Balmer line decrements have been used todetermine electron densities. The results are consistent with valuesderived from forbidden-line density-diagnostics.
| DSS1/DSS2 astrometry for 1101 First Byurakan Survey blue stellar objects: Accurate positions and other results Accurate measurements of the positions of 1101 First Byurakan Survey(FBS) blue stellar objects (the Second part of the FBS) have beencarried out on the DSS1 and DSS2 (red and blue images). To establish theaccuracy of the DSS1 and DSS2, measurements have been made for 153 AGNfor which absolute VLBI coordinates have been published. The rms errorsare: 0.45 arcsec for DSS1, 0.33 arcsec for DSS2 red, and 0.59 arcsec forDSS2 blue in each coordinate, the corresponding total positional errorsbeing 0.64 arcsec, 0.46 arcsec, and 0.83 arcsec, respectively. Thehighest accuracy (0.42 arcsec) is obtained by weighted averaging of theDSS1 and DSS2 red positions. It is shown that by using all three DSSimages accidental errors can be significantly reduced. The comparison ofDSS2 and DSS1 images made it possible to reveal positional differencesand proper motions for 78 objects (for 62 of these for the first time),including new high-probability candidate white dwarfs, and to findobjects showing strong variability, i.e. high-probability candidatecataclysmic variables.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/426/367
| Planetary nebula distances re-examined: an improved statistical scale The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.
| Electron temperatures and densities of planetary nebulae determined from the nebular hydrogen recombination spectrum and temperature and density variations A method is presented to derive electron temperatures and densities ofplanetary nebulae (PNe) simultaneously, using the observed hydrogenrecombination spectrum, which includes continuum and line emission. Bymatching theoretical spectra to observed spectra around the Balmer jumpat about 3646 Å, we determine electron temperatures and densitiesfor 48 Galactic PNe. The electron temperatures based on this method -hereafter Te(Bal) - are found to be systematically lower thanthose derived from [OIII] λ4959/λ4363 and [OIII] (88 μm+ 52 μm)/λ4959 ratios - hereafterTe([OIII]na) andTe([OIII]fn). The electron densities based on thismethod are found to be systematically higher than those derived from[OII] λ3729/λ3726, [SII] λ6731/λ6716,[ClIII] λ5537/λ5517, [ArIV] λ4740/λ4711 and[OIII] 88 μm/52 μm ratios. These results suggest that temperatureand density fluctuations are generally present within nebulae. Thecomparison of Te([OIII]na) and Te(Bal)suggests that the fractional mean-square temperature variation(t2) has a representative value of 0.031. A majority oftemperatures derived from the Te([OIII]fn) ratioare found to be higher than those of Te([OIII]na),which is attributed to the existence of dense clumps in nebulae - those[OIII] infrared fine-structure lines are suppressed by collisionalde-excitation in the clumps. By comparingTe([OIII]fn), Te([OIII]na)and Te(Bal) and assuming a simple two-density-componentmodel, we find that the filling factor of dense clumps has arepresentative value of 7 × 10-5. The discrepanciesbetween Te([OIII]na) and Te(Bal) arefound to be anticorrelated with electron densities derived from variousdensity indicators; high-density nebulae have the smallest temperaturediscrepancies. This suggests that temperature discrepancy is related tonebular evolution. In addition, He/H abundances of PNe are found to bepositively correlated with the difference betweenTe([OIII]na) and Te(Bal), suggestingthat He/H abundances might have been overestimated generally because ofthe possible existence of H-deficient knots. Electron temperatures anddensities deduced from spectra around the Paschen jump regions at 8250Åare also obtained for four PNe: NGC 7027, NGC 6153, M 1-42 andNGC 7009. Electron densities derived from spectra around the Paschenjump regions are in good agreement with the corresponding values derivedfrom spectra around the Balmer jump, whereas temperatures deduced fromthe spectra around the Paschen jump are found to be lower than thecorresponding values derived from spectra around the Balmer jump for allthe four cases. The reason remains unclear.
| A reanalysis of chemical abundances in galactic PNe and comparison with theoretical predictions New determinations of chemical abundances for He, N, O, Ne, Ar and Sare derived for all galactic planetary nebulae (PNe) so far observedwith a relatively high accuracy, in an effort to overcome differences inthese quantities obtained over the years by different authors usingdifferent procedures. These include: ways to correct for interstellarextinction, the atomic data used to interpret the observed line fluxes,the model nebula adopted to represent real objects and the ionizationcorrections for unseen ions. A unique `good quality' classical-typeprocedure, i.e. making use of collisionally excited forbidden lines toderive ionic abundances of heavy ions, has been applied to allindividual sets of observed line fluxes in each specific position withineach PN. Only observational data obtained with linear detectors, andsatisfying some `quality' criteria, have been considered. Suchobservations go from the mid-1970s up to the end of 2001. Theobservational errors associated with individual line fluxes have beenpropagated through the whole procedure to obtain an estimate of theaccuracy of final abundances independent of an author's `prejudices'.Comparison of the final abundances with those obtained in relevantmulti-object studies on the one hand allowed us to assess the accuracyof the new abundances, and on the other hand proved the usefulness ofthe present work, the basic purpose of which was to take full advantageof the vast amount of observations done so far of galactic PNe, handlingthem in a proper homogeneous way. The number of resulting PNe that havedata of an adequate quality to pass the present selection amounts to131. We believe that the new derived abundances constitute a highlyhomogeneous chemical data set on galactic PNe, with realisticuncertainties, and form a good observational basis for comparison withthe growing number of predictions from stellar evolution theory. Owingto the known discrepancies between the ionic abundances of heavyelements derived from the strong collisonally excited forbidden linesand those derived from the weak, temperature-insensitive recombinationlines, it is recognized that only abundance ratios between heavyelements can be considered as satisfactorily accurate. A comparison withtheoretical predictions allowed us to assess the state of the art inthis topic in any case, providing some findings and suggestions forfurther theoretical and observational work to advance our understandingof the evolution of low- and intermediate-mass stars.
| 12C/13C Ratio in Planetary Nebulae from the IUE Archives We investigated the abundance ratio of 12C/13C inplanetary nebulae by examining emission lines arising from C III2s2p3Po2,1,0-->2s21S0.Spectra were retrieved from the International Ultraviolet Explorerarchives, and multiple spectra of the same object were co-added toachieve improved signal-to-noise ratio. The 13C hyperfinestructure line at 1909.6 Å was detected in NGC 2440. The12C/13C ratio was found to be ~4.4+/-1.2. In allother objects, we provide an upper limit for the flux of the 1910Å line. For 23 of these sources, a lower limit for the12C/13C ratio was established. The impact on ourcurrent understanding of stellar evolution is discussed. The resultinghigh-signal-to-noise ratio C III spectrum helps constrain the atomicphysics of the line formation process. Some objects have the measured1907/1909 Å flux ratio outside the low-electron densitytheoretical limit for 12C. A mixture of 13C with12C helps to close the gap somewhat. Nevertheless, someobserved 1907/1909 Å flux ratios still appear too high to conformto the currently predicted limits. It is shown that this limit, as wellas the 1910/1909 Å flux ratio, are predominantly influenced byusing the standard partitioning among the collision strengths for themultiplet1S0-3PoJaccording to the statistical weights. A detailed calculation for thefine-structure collision strengths between these individual levels wouldbe valuable.
| Sulfur, Chlorine, and Argon Abundances in Planetary Nebulae. IV. Synthesis and the Sulfur Anomaly We have compiled a large sample of O, Ne, S, Cl, and Ar abundances thathave been determined for 85 Galactic planetary nebulae in a consistentand homogeneous manner using spectra extending from 3600 to 9600Å. Sulfur abundances have been computed using the near-IR lines of[S III] λλ9069, 9532 along with [S III] temperatures. Wefind average values, expressed logarithmically with a standarddeviation, of log(S/O)=-1.91+/-0.24, log(Cl/O)=-3.52+/-0.16, andlog(Ar/O)=-2.29+/-0.18, numbers consistent with previous studies of bothplanetary nebulae and H II regions. We also find a strong correlationbetween [O III] and [S III] temperatures among planetary nebulae. Inanalyzing abundances of Ne, S, Cl, and Ar with respect to O, we find atight correlation for Ne-O, and loose correlations for Cl-O and Ar-O.All three trends appear to be colinear with observed correlations for HII regions. S and O also show a correlation, but there is a definiteoffset from the behavior exhibited by H II regions and stars. We suggestthat this S anomaly is most easily explained by the existence ofS+3, whose abundance must be inferred indirectly when onlyoptical spectra are available, in amounts in excess of what is predictedby model-derived ionization correction factors in PNe. Finally for thedisk PNe, abundances of O, Ne, S, Cl, and Ar all show gradients whenplotted against Galactocentric distance. The slopes are statisticallyindistinguishable from one another, a result which is consistent withthe notion that the cosmic abundances of these elements evolve inlockstep.
| The relation between Zanstra temperature and morphology in planetary nebulae We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.
| Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}
| Ionized haloes in planetary nebulae: new discoveries, literature compilation and basic statistical properties We present a comprehensive observational study of haloes aroundplanetary nebulae (PNe). Deep Hα+[NII] and/or [OIII] narrow-bandimages have been obtained for 35 PNe, and faint extended haloes havebeen newly discovered in the following 10 objects: Cn 1-5, IC 2165, IC2553, NGC 2792, NGC 2867, NGC 3918, NGC 5979, NGC 6578, PB 4, andpossibly IC 1747. New deep images have also been obtained of other knownor suspected haloes, including the huge extended emission around NGC3242 and Sh 2-200. In addition, the literature was searched, andtogether with the new observations an improved data base containing some50 PN haloes has been compiled.The halo sample is illustrated in an image atlas contained in thispaper, and the original images are made available for use by thescientific community at http://www.ing.iac.es/~rcorradi/HALOES/.The haloes have been classified following the predictions of modernradiation-hydrodynamical simulations that describe the formation andevolution of ionized multiple shells and haloes around PNe. According tothe models, the observed haloes have been divided into the followinggroups: (i) circular or slightly elliptical asymptotic giant branch(AGB) haloes, which contain the signature of the last thermal pulse onthe AGB; (ii) highly asymmetrical AGB haloes; (iii) candidaterecombination haloes, i.e. limb-brightened extended shells that areexpected to be produced by recombination during the late post-AGBevolution, when the luminosity of the central star drops rapidly by asignificant factor; (iv) uncertain cases which deserve further study fora reliable classification; (v) non-detections, i.e. PNe in which no halois found to a level of <~10-3 the peak surface brightnessof the inner nebulae.We discuss the properties of the haloes: detection rate, morphology,location of the central stars in the Hertzsprung-Russell diagram, sizes,surface brightness profiles, and kinematical ages. Among the mostnotable results, we find that, as predicted by models, ionized AGBhaloes are a quite common phenomenon in PNe, having been found in 60 percent of elliptical PNe for which adequately deep images exist. Another10 per cent show possible recombination haloes. In addition, using thekinematical ages of the haloes and inner nebulae, we conclude that mostof the PNe with observed AGB haloes have left the AGB far from a thermalpulse, at a phase when hydrogen burning is the dominant energy source.We find no significant differences between the AGB haloes ofhydrogen-poor and hydrogen-rich central stars.
| Spherical planetary nebulae By examining their mass loss history and their distribution in thegalaxy, I argue that spherical planetary nebulae (PNe) form a specialgroup among all planetary nebulae. The smooth surface brightness of mostspherical PNe suggests that their progenitors did not go through a finalintensive wind (FIW, also termed superwind) phase. While ~70% of the PNeof all other PNe groups are closer to the galactic center than the sunis, only ~30% of spherical PNe are; ~70% of them are farther away fromthe galactic center. These, plus the well-known high scale height abovethe galactic plane of spherical PNe, suggest that the progenitors ofspherical PNe are low mass stars having low metallicity. Although manystars have these properties, only ~10% of all PNe are spherical. Bycomparing the galactic distribution of spherical PNe to the metallicityevolution in the galaxy, I find that the critical metallicity abovewhich no spherical PNe are formed is [Fe/H] ~ -0.4. I explain this aswell as other properties of spherical PNe in the context of thecompanion model for shaping PNe, arguing that spherical PNe are formedfrom stars that have no close companion, stellar or substellar, orbitingthem. I discuss the connection of the proposed scenario to the recentfinding of extrasolar planets and to the presence of blue horizontalbranch stars in globular clusters.
| Classification of planetary nebulae by their departure from axisymmetry We propose a scheme to classify planetary nebulae (PNe) according totheir departure from axisymmetric structure. We consider only departurealong and near the equatorial plane, i.e. between the two sidesperpendicular to the symmetry axis of the nebula. We consider six typesof departure from axisymmetry: (1) PNe where the central star is not atthe centre of the nebula; (2) PNe having one side brighter than theother; (3) PNe having unequal size or shape of the two sides; (4) PNewhere the symmetry axis is bent, e.g. the two lobes in a bipolar PN arebent toward the same side; (5) PNe where the main departure fromaxisymmetry is in the outer regions, e.g. an outer arc; and (6) PNe thatshow no departure from axisymmetry, i.e. any departure, if it exists, ison scales smaller than the scale of blobs, filaments and otherirregularities in the nebula. PNe that possess more than one type ofdeparture are classified by the most prominent type. We discuss theconnection between departure types and the physical mechanisms that maycause them, mainly resulting from the influence of a stellar binarycompanion. We find that ~50 per cent of all PNe in the analysed samplepossess large-scale departure from axisymmetry. This number is largerthan that expected from the influence of binary companions, namely~25-30 per cent. We argue that this discrepancy comes from many PNewhere the departure from axisymmetry, mainly unequal size, shape orintensity, results from the presence of long-lived and large (hot orcool) spots on the surface of their asymptotic giant branch progenitors.Such spots locally enhance the mass-loss rate, leading to a departurefrom axisymmetry, mainly near the equator, in the descendent PN.
| Turbulent planetary nebulae around [WC]-type stars Through a high-resolution spectroscopic survey, we analyze the velocityfield of 16 planetary nebulae with [WC]- or wels-type nuclei incomparison with 8 nebulae having other central star types. We foundspectral evidence for finite turbulent velocities in [WC]-type planetarynebulae superimposed on an essentially constant expansion velocitypattern. The nebulae around O-type stars show no evidences forsignificant turbulence while their expansion velocity is found toincrease outwards. Both types of nebulae show the same mean expansionvelocity. Our results support the earlier suggestions that nebulaesurrounding [WC] central stars are likely related to long-lastingmomentum-driven phase bubbles. Turbulence in the nebulae can be eithertriggered, or enhanced, by stellar wind inhomogeneities that appearubiquitous in Wolf-Rayet nuclei. Based on observations obtained at theEuropean Southern Observatory and the Observatoire de Haute Provence.
| Study of Spectral Variability of the Planetary Nebula IC 4997 Over 25 Years (1972-1996) The spectrum of the planetary nebula IC 4997 was observedphotographically in Crimea in 1972-1996. The objective prismspectrograms were used for estimation of the flux in eleven brightemission lines of the nebula and in the continuum of the central star.Most spectral characteristics were found to change in time. The ratio Rof the [O III] lambda 4363 and H gamma fluxes exhibited the greatestchange over 1972-1996; this ratio reached a maximum ( logR = + 0.28) in1992. In the next years it began to decrease. Increases in theexcitation and ionization degrees of the nebula were detected.
| Study of electron density in planetary nebulae. A comparison of different density indicators We present a comparison of electron density estimates for planetarynebulae based on different emission-line ratios. We have considered thedensity indicators [O Ii]lambda 3729/lambda 3726, [S Ii]lambda6716/lambda 6731, [Cl Iii]lambda 5517/lambda 5537, [Ar Iv]lambda4711/lambda 4740, C Iii]lambda 1906/lambda 1909 and [N I]lambda5202/lambda 5199. The observational data were extracted from theliterature. We have found systematic deviations from the densityhomogeneous models, in the sense that: Ne(ion {N}i) <~Ne(ion {O}{ii}) < Ne(ion {S}{ii}, ion {C}{iii},ion {Cl}{iii} or ion {Ar}{iv}) and Ne(ion {S}{ii}) ~Ne(ion {C}{iii}) ~ Ne(ion {Cl}{iii}) ~Ne(ion {Ar}{iv}). We argue that the lower [O Ii] densityestimates are likely due to errors in the atomic parameters used.
| Shapes and Shaping of Planetary Nebulae We review the state of observational and theoretical studies of theshaping of planetary nebulae (PNe) and protoplanetary nebulae (pPNe). Inthe past decade, high-resolution studies of PNe have revealed abewildering array of morphologies with elaborate symmetries. Recentimaging studies of pPNe exhibit an even richer array of shapes. Thevariety of shapes, sometimes multiaxial symmetries, carefully arrangedsystems of low-ionization knots and jets, and the often Hubble-flowkinematics of PNe and pPNe indicate that there remains much tounderstand about the last stages of stellar evolution. In many cases,the basic symmetries and shapes of these objects develop on extremelyshort timescales, seemingly at the end of AGB evolution when the mode ofmass loss abruptly and radically changes. No single explanation fits allof the observations. The shaping process may be related to externaltorques of a close or merging binary companion or the emergence ofmagnetic fields embedded in dense outflowing stellar winds. We suspectthat a number of shaping processes may operate with different strengthsand at different stages of the evolution of any individual object.
| Helium contamination from the progenitor stars of planetary nebulae: The He/H radial gradient and the ΔY / ΔZ enrichment ratio In this work, two aspects of the chemical evolution of 4He inthe Galaxy are considered on the basis of a sample of disk planetarynebulae (PN). First, an application of corrections owing to thecontamination of 4He from the evolution of the progenitorstars shows that the He/H abundance by number of atoms is reduced by0.012 to 0.015 in average, leading to an essentially flat He/H radialdistribution. Second, a determination of the helium to heavy elementenrichment ratio using the same corrections leads to values in the range2.8 < ΔY / ΔZ < 3.6 for Y p = 0.23 and 2.0< ΔY / ΔZ < 2.8 for Y p = 0.24, in goodagreement with recent independent determinations and theoretical models.
| ISO LWS observations of planetary nebula fine-structure lines We have obtained 43-198μm far-infrared (IR) spectra for a sample of51 Galactic planetary nebulae (PN) and protoplanetary nebulae (PPN),using the Long Wavelength Spectrometer (LWS) on board the Infrared SpaceObservatory (ISO). Spectra were also obtained of the former PN candidateLo 14. The spectra yield fluxes for the fine-structure lines [Nii]122μm, [Niii] 57μm and [Oiii] 52 and 88μm emitted in theionized regions and the [Oi] 63- and 146-μm and [Cii] 158-μm linesfrom the photodissociation regions (PDRs), which have been used todetermine electron densities and ionic abundances for the ionizedregions and densities, temperatures and gas masses for the PDRs. Thestrong [Niii] and [Oiii] emission lines detected in the LWS spectrumtaken centred on Lo 14 could be associated with the nearby strong radioand infrared source G 331.5-0.1. We find that the electron densitiesyielded by the [Oiii] 88μm/52μm doublet ratio are systematicallylower than those derived from the optical [Ariv]λ4740/λ4711 and [Cliii] λ5537/λ5517 doubletratios, which have much higher critical densities than the 52- and88-μm lines, suggesting the presence of density inhomogeneities inthe nebulae. Ionic abundances, N+/H+,N2+/H+ and O2+/H+, as wellas the N2+/O2+ abundance ratio, which provides agood approximation to the N/O elemental abundance ratio, are derived.Although ionic abundances relative to H+ deduced from thefar-IR fine-structure lines are sensitive to the adopted electrondensity and the presence of density inhomogeneities, the strongdependence on the nebular physical conditions is largely cancelled outwhen N2+/O2+ is calculated from the57μm/(52μm+88μm) flux ratio, owing to the similarity of thecritical densities of the lines involved. The temperatures and densitiesof the PDRs around 24 PN have been determined from the observed [Oi] and[Cii] line intensity ratios. Except for a few objects, the deducedtemperatures fall between 200 and 500K, peaking around 250K. Thedensities of the PDRs vary from104-105cm-3, reaching3×105cm-3 in some young compact PN. With aderived temperature of 1600K and a density of105cm-3, the PDR of NGC 7027 is one of the warmestand at the same time one of the densest amongst the nebulae studied. Formost of the PN studied, the [Cii]-emitting regions contain only modestamounts of material, with gas masses <~0.1Msolar.Exceptional large PDR masses are found for a few nebulae, including NGC7027, the bipolar nebulae M2-9 and NGC 6302, the young dense planetarynebulae BD+30°3639, IC 418 and NGC 5315, and the old, probablyrecombining, nebulae IC 4406 and NGC 6072.
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|