Home     Baþlangýç     Evrende yaþayabilmek için    
Inhabited Sky
    News@Sky     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Basýn     Giriþ  

NGC 4682


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

The connection between shear and star formation in spiral galaxies
We present a sample of 33 galaxies for which we have calculated (i) theaverage rate of shear from published rotation curves, (ii) thefar-infrared luminosity from IRAS fluxes, and (iii) theKs-band luminosity from the Two Micron All Sky Survey(2MASS). We show that a correlation exists between the shear rate andthe ratio of the far-infrared to Ks-band luminosity. Thisratio is essentially a measure of the star formation rate per unit mass,or the specific star formation rate. From this correlation we show thata critical shear rate exists, above which star formation would turn offin the discs of spiral galaxies. Using the correlation between shearrate and spiral arm pitch angle, this shear rate corresponds to thelowest pitch angles typically measured in near-infrared images of spiralgalaxies.

Ionized gas and stellar kinematics of seventeen nearby spiral galaxies
Ionized gas and stellar kinematics have been measured along the majoraxes of seventeen nearby spiral galaxies of intermediate to latemorphological type. We discuss the properties of each sample galaxy,distinguishing between those characterized by regular or peculiarkinematics. In most of the observed galaxies, ionized gas rotates morerapidly than stars and has a lower velocity dispersion, as is to beexpected if the gas is confined in the disc and supported by rotationwhile the stars are mostly supported by dynamical pressure. In a fewobjects, gas and stars show almost the same rotational velocity and lowvelocity dispersion, suggesting that their motion is dominated byrotation. Incorporating the spiral galaxies studied by Bertola et al.(\cite{Bertola1996}), Corsini et al. (\cite{Corsini1999},\cite{Corsini2003}) and Vega Beltrán et al. (\cite{Vega2001}) wehave compiled a sample of 50 S0/a-Scd galaxies, for which the major-axiskinematics of the ionized gas and stars have been obtained with the samespatial (≈1'') and spectral (≈50 km;s-1) resolution,and measured with the same analysis techniques. This allowed us toaddress the frequency of counter-rotation in spiral galaxies. It turnsout that less than 12% and less than 8% (at the 95% confidence level) ofthe sample galaxies host a counter-rotating gaseous and stellar disc,respectively. The comparison with S0 galaxies suggests that theretrograde acquisition of small amounts of external gas gives rise tocounter-rotating gaseous discs only in gas-poor S0s, while in gas-richspirals the newly acquired gas is swept away by the pre-existing gas.Counter-rotating gaseous and stellar discs in spirals are formed onlyfrom the retrograde acquisition of large amounts of gas exceeding thatof pre-existing gas, and subsequent star formation, respectively.Based on observations carried out at the European Southern Observatory,La Silla (Chile) (ESO 56.A-0684 and 57.A-0569).Tables 3 and 4 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/424/447Full Fig. \ref{fig:kinematics} and Figs. \ref{fig:gascomparison} and\ref{fig:starcomparison} are only available in electronic form athttp://www.edpsciences.org

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Local velocity field from sosie galaxies. I. The Peebles' model
Pratton et al. (1997) showed that the velocity field around clusterscould generate an apparent distortion that appears as tangentialstructures or radial filaments. In the present paper we determine theparameters of the Peebles' model (1976) describing infall of galaxiesonto clusters with the aim of testing quantitatively the amplitude ofthis distortion. The distances are determined from the concept of sosiegalaxies (Paturel 1984) using 21 calibrators for which the distanceswere recently calculated from two independent Cepheid calibrations. Weuse both B and I-band magnitudes. The Spaenhauer diagram method is usedto correct for the Malmquist bias. We give the equations for theconstruction of this diagram. We analyze the apparent Hubble constant indifferent regions around Virgo and obtain simultaneously the Local Groupinfall and the unperturbed Hubble constant. We found:[VLG-infall = 208 ± 9 km s-1] [\log H =1.82 ± 0.04 (H ≈ 66 ± 6 km s-1Mpc-1).] The front side and backside infalls can be seenaround Virgo and Fornax. In the direction of Virgo the comparison ismade with the Peebles' model. We obtain: [vinfall} =CVirgo/r0.9 ± 0.2] withCVirgo=2800 for Virgo and CFornax=1350 for Fornax,with the adopted units (km s-1 and Mpc). We obtain thefollowing mean distance moduli: [μVirgo=31.3 ± 0.2(r=18 Mpc )] [μFornax=31.7 ± 0.3 (r=22 Mpc). ] Allthese quantities form an accurate and coherent system. Full Table 2 isonly available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/57

Discrete dynamical classes for galaxy discs and the implication of a second generation of Tully-Fisher methods
In Roscoe (\cite{RoscoeA}), it was described how the modelling of asmall sample of optical rotation curves (ORCs) given by Rubin et al.(\cite{Rubin}) with the power-law Vrot=ARα,where where the parameters (A,alpha ) vary between galaxies, raised thehypothesis that the parameter A (considered in the form ln A) had apreference for certain discrete values. This specific hypothesis wastested in that paper against a sample of 900 spiral galaxy rotationcurves measured by Mathewson et al. (\cite{Mathewson1992}), but foldedby Persic & Salucci (\cite{Persic1995}), and was confirmed on thislarge sample with a conservatively estimated upper bound probability of10-7 against it being a chance effect. In this paper, webegin by reviewing the earlier work, and then describe the analyses ofthree additional samples; the first of these, of 1200+ Southern skyORCs, was published by Mathewson & Ford (\cite{Mathewson1996}), thesecond, of 497 Northern sky ORCs, is a composite sample provided by kindpermission of Giovanelli & Haynes published in the sequence ofpapers Dale et al. (\cite{Dale1997}, \cite{Dale1998}, \cite{Dale1999})and Dale & Uson (\cite{Dale2000}), whilst the third, of 305 Northernsky ORCs, was published by Courteau (\cite{Courteau}). These analysesprovide overwhelmingly compelling confirmation of what was already apowerful result. Apart from other considerations, the results leaddirectly to what can be described as a ``second generation ofTully-Fisher methods''. We give a brief discussion of the furtherimplications of the result.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

A Dynamical Study of Galaxies in the Hickson Compact Groups
To investigate dynamical properties of spiral galaxies in the Hicksoncompact groups (HCGs), we present rotation curves of 30 galaxies in 20HCGs. We found as follows: (1) There is no significant relation betweendynamical peculiarity and morphological peculiarity in HCG spiralgalaxies. (2) There is no significant relation between the dynamicalproperties and the frequency distribution of nuclear activities in HCGspiral galaxies. (3) There are no significant correlations between thedynamical properties of HCG spiral galaxies and any group properties(i.e., size, velocity dispersion, galaxy number density, and crossingtime). (4) Asymmetric and peculiar rotation curves are more frequentlyseen in the HCG spiral galaxies than in field spiral galaxies or incluster ones. However, this tendency is more obviously seen in late-typeHCG spiral galaxies. These results suggest that the dynamical propertiesof HCG spiral galaxies do not strongly correlate with the morphology,the nuclear activity, and the group properties. Our results also suggestthat more frequent galaxy collisions occur in the HCGs than in the fieldand in the clusters.

Investigations of the Local Supercluster velocity field. III. Tracing the backside infall with distance moduli from the direct Tully-Fisher relation
We have extended the discussion of Paper II (Ekholm et al.\cite{Ekholm99a}) to cover also the backside of the Local Supercluster(LSC) by using 96 galaxies within Theta <30degr from the adoptedcentre of LSC and with distance moduli from the direct B-bandTully-Fisher relation. In order to minimize the influence of theMalmquist bias we required log Vmax>2.1 and sigmaB_T<0.2mag. We found out that ifRVirgo<20 Mpc this sample fails to follow the expecteddynamical pattern from the Tolman-Bondi (TB) model. When we compared ourresults with the Virgo core galaxies given by Federspiel et al.(\cite{Federspiel98}) we were able to constrain the distance to Virgo:RVirgo=20-24 Mpc. When analyzing the TB-behaviour of thesample as seen from the origin of the metric as well as that withdistances from the extragalactic Cepheid PL-relation we found additionalsupport to the estimate RVirgo= 21 Mpc given in Paper II.Using a two-component mass-model we found a Virgo mass estimateMVirgo=(1.5 - 2)x Mvirial, whereMvirial=9.375*E14Msun forRVirgo= 21 Mpc. This estimate agrees with the conclusion inPaper I (Teerikorpi et al. \cite{Teerikorpi92}). Our results indicatethat the density distribution of luminous matter is shallower than thatof the total gravitating matter when q0<= 0.5. Thepreferred exponent in the density power law, alpha ~2.5, agrees withrecent theoretical work on the universal density profile of dark matterclustering in an Einstein-deSitter universe (Tittley & Couchman\cite{Tittley99}).

Bulge-Disk Decomposition of 659 Spiral and Lenticular Galaxy Brightness Profiles
We present one of the largest homogeneous sets of spiral and lenticulargalaxy brightness profile decompositions completed to date. The 659galaxies in our sample have been fitted with a de Vaucouleurs law forthe bulge component and an inner-truncated exponential for the diskcomponent. Of the 659 galaxies in the sample, 620 were successfullyfitted with the chosen fitting functions. The fits are generally welldefined, with more than 90% having rms deviations from the observedprofile of less than 0.35 mag. We find no correlations of fittingquality, as measured by these rms residuals, with either morphologicaltype or inclination. Similarly, the estimated errors of the fittedcoefficients show no significant trends with type or inclination. Thesedecompositions form a useful basis for the study of the lightdistributions of spiral and lenticular galaxies. The object base issufficiently large that well-defined samples of galaxies can be selectedfrom it.

The Southern Sky Redshift Survey
We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.

A catalogue of spatially resolved kinematics of galaxies: Bibliography
We present a catalogue of galaxies for which spatially resolved data ontheir internal kinematics have been published; there is no a priorirestriction regarding their morphological type. The catalogue lists thereferences to the articles where the data are published, as well as acoded description of these data: observed emission or absorption lines,velocity or velocity dispersion, radial profile or 2D field, positionangle. Tables 1, 2, and 3 are proposed in electronic form only, and areavailable from the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (to130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

A comparative study of morphological classifications of APM galaxies
We investigate the consistency of visual morphological classificationsof galaxies by comparing classifications for 831 galaxies from sixindependent observers. The galaxies were classified on laser print copyimages or on computer screen using scans made with the Automated PlateMeasuring (APM) machine. Classifications are compared using the RevisedHubble numerical type index T. We find that individual observers agreewith one another with rms combined dispersions of between 1.3 and 2.3type units, typically about 1.8 units. The dispersions tend to decreaseslightly with increasing angular diameter and, in some cases, withincreasing axial ratio (b/a). The agreement between independentobservers is reasonably good but the scatter is non-negligible. In spiteof the scatter, the Revised Hubble T system can be used to train anautomated galaxy classifier, e.g. an artificial neural network, tohandle the large number of galaxy images that are being compiled in theAPM and other surveys.

Dark Matter Particles and the Flat Rotation Curves of Spiral Galaxies
Not Available

A Preliminary Classification Scheme for the Central Regions of Late-Type Galaxies
The large-scale prints in The Carnegie Atlas of Galaxies have been usedto formulate a classification scheme for the central regions oflate-type galaxies. Systems that exhibit small bright central bulges ordisks (type CB) are found to be of earlier Hubble type and of higherluminosity than galaxies that do not contain nuclei (type NN). Galaxiescontaining nuclear bars, or exhibiting central regions that are resolvedinto individual stars and knots, and galaxies with semistellar nuclei,are seen to have characteristics that are intermediate between those oftypes CB and NN. The presence or absence of a nucleus appears to be auseful criterion for distinguishing between spiral galaxies andmagellanic irregulars.

Exponential bulges in late-type spirals: an improved description of the light distribution
In many cases the modeling of spiral galaxies by an exponential disc andan R1/4-law bulge does not satisfactorily describe the meanradial distribution of light. This is most evident in non-linearleast-squares fitting techniques in which the resulting effective radiusand surface brightness of the bulge are characterized by largeuncertainties and are scattered over large ranges, in sharp contrast totheir disc counterparts. We attempt to decompose the major-axis profilesof 34 late-type spirals in terms of an alternative model consisting ofan exponential disc and an exponential bulge, using seeing-convolvedmodels. The results of this decomposition show that this model issuperior in the statistical aspects of the fitting procedure, in thesense that the various goodness-of-fit indicators are better and theresiduals are smaller. The fact that it also confines the parameters ofthe bulge to a range whose narrowness is comparable to that of theparameters of the disc indicates that this model has the potential togive a better and more consistent description of the bulges of late-typespirals.

CCD calibration of the magnitude scale for the SSRS2 sample: The equatorial region
In this paper we continue our investigation on the isophotal nature,accuracy, and uniformity of the magnitude system adopted in the SouthernSky Redshift Survey extension (SSRS2). Extending our earlier work, weexamine galaxies in the equatorial region, primarily in the declinationrange delta greater than or equal to -17.5 deg and less than or equal to0 deg, over a large range of right ascension, covering the southern andnorthern Galactic caps. For this purpose, we have obtained CCD isophotalmagnitudes in the B and R bands for 265 galaxies of differentmorphological types. Using the larger sample we confirm our earlierclaim that the mSSRS2 magnitudes are very nearly themagnitude measured within the isophote muB = 26 mag/sqarcsec, with a dispersion of about 0.30 mag. The relative zero-pointoffset between our mSSRS2 magnitudes and the CCD photometryis -0.02 mag from all data we have obtained. However, we detect avariation of the zero-point across different regions of the sky of +/-0.10 mag for regions at large angular separations. We also estimate thatthe zero-point offset between the mSSRS2 and Zwicky systemsis relatively small (approximately 0.10 mag), which should allow us tocombine the data from the SSRS2 and the CfA2 Redshift Survey.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

Satellites of spiral galaxies
We present a survey of satellites around a homogeneous set of late-typespirals with luminosity similar to that of the Milky Way. On average, wefind fewer than 1.5 satellites per primary, but we argue that we cantreat the survey as an ensemble and so derive the properties of the haloof a 'typical' isolated spiral. The projected density profile of theensemble falls off approximately as 1/r. Within 50 kpc the azimuthaldistribution of satellites shows some evidence for the 'Holmbergeffect', an excess near the minor axis of the primary; however, atlarger projected distances, the distribution appears isotropic. There isa weak but significant correlation between the size of a satellite andits distance from its primary, as expected if satellites are tidallytruncated. Neither Hubble type nor spectral characteristics correlatewith apparent separation. The ensemble of satellites appears to berotating at about 30 km/s in the same direction as the galactic disk.Satellites on prograde orbits tend to be brighter than those onretrograde orbits. The typical velocity difference between a satelliteand its primary shows no clear dependence either on apparent separation,or on the rotation speed of the primary. Thus our survey demonstratesthat isolated spiral galaxies have massive halos that extend to manyoptical radii.

General study of group membership. II - Determination of nearby groups
We present a whole sky catalog of nearby groups of galaxies taken fromthe Lyon-Meudon Extragalactic Database. From the 78,000 objects in thedatabase, we extracted a sample of 6392 galaxies, complete up to thelimiting apparent magnitude B0 = 14.0. Moreover, in order to considersolely the galaxies of the local universe, all the selected galaxieshave a known recession velocity smaller than 5500 km/s. Two methods wereused in group construction: a Huchra-Geller (1982) derived percolationmethod and a Tully (1980) derived hierarchical method. Each method gaveus one catalog. These were then compared and synthesized to obtain asingle catalog containing the most reliable groups. There are 485 groupsof a least three members in the final catalog.

The V-R Diagram - a Diagnostic Tool for the Dynamical Classification of Spiral Galaxies
The relations between the angular momentum (J) and the mass (M) for asample of spiral galaxies are discussed for galaxies distributed in therotational velocity (V) - size (R) plane. It is found that, for a givenmass, Sc galaxies have larger angular momentum (~20%) than Sa. Theabsence of segregation in the angular momentum (J) - mass (M) plane isexplained in terms of observational errors, which are greater than theexpected differences in J between galaxies of equal mass and differenttype. The distribution of lenticular and irregular galaxies in the V-Rplane is also discussed.

Groups of galaxies within 80 Mpc. II - The catalogue of groups and group members
This paper gives a catalog of the groups and associations obtained bymeans of a revised hierarchical algorithm applied to a sample of 4143galaxies with diameters larger than 100 arcsec and redshifts smallerthan 6000 km/s. The 264 groups of galaxies obtained in this way (andwhich contain at least three sample galaxies) are listed, with the looseassociations surrounding them and the individual members of eachaggregate as well; moreover, the location of every entity among 13regions corresponding roughly to superclusters is specified. Finally,1729 galaxies belong to the groups, and 466 to the associations, i.e.,the total fraction of galaxies within the various aggregates amounts to53 percent.

The mass-to-light ratio in spiral galaxies
The galactocentric variation of the dynamical mass-to-light ratio for alarge sample of field and Hickson compact group spirals has beenexamined in a systematic way. The majority of galaxies in this sample donot have a constant M/LR, but rather one that increases with radius. Thegradient in M/LR between 0.2 and 0.6 R25 is correlated with totalluminosity, in that faint galaxies have a higher proportion of darkmatter at large radii. The absolute value of M/LR at 0.5 R25 isconsistent with early type spirals having more dark matter. Highermetallicity gas is found in galaxies with a deeper gravitationalpotential.

Dark-to-luminous mass ratio in spiral galaxies
We have calculated the mass-to-light ratios of spiral galaxies in theblue band and the H-band by using a chemical and photometric evolutionmodel with a two-component bulge-disc system. The slopes of thetheoretical M/L(b) vs. (B-V) and M/L(h) vs. (B-H) relations are muchsmaller than those of Larson and Tinsley (1978), which were adopted inprevious studies. The model predictions agree with the data of Rubin etal. (1982, 1985) and Burstein et al. (1982); the masses referred to arethose within a radius corresponding to the isophotal level of surfacebrightness at 25th B mag/sq arcsec. We find no evidence which supportsthe previous claims that bluer galaxies have relatively more massivedark halos. We conclude that the ratio of dark-to-luminous mass isuniform among spiral galaxies, contrary to the conventional view.

The dark matter content of spiral galaxies
A novel technique for calculating the fraction of dark material withinthe optical radius of spiral galaxies is presented. Disk luminositiesare converted to disk masses, and the latter are compared to dynamicalmasses. The method employs the well-established observational resultthat spiral galaxies have similar central surface brightnesses, as wellas published stellar-synthesis evolutionary models, color-magnituderelations, and optical rotation curves. No assumptions about the darkmatter distribution are necessary. It is found that the ratio ofdisk-to-dynamical mass within the optical radius increases roughly asLB exp 0.4. This is in good agreement with the results ofPersic and Salucci (1991) which are derived from independentconsiderations.

Arm classification and velocity gradients in spiral galaxies
On the basis of published rotation curves, velocity gradients arecompiled for 94 galaxies. A significant correlation is found in thissample of galaxies between their gradients and arm classes (as given byElmegreen and Elmegreen, 1982); galaxies with steeper curves tend tohave a flocculent arm structure, and galaxies with flatter curves tendto have a grand design morphology. The correlation is true, since it isnot induced by other correlations. The present result is in agreementwith previous suggestions by Whitmore (1984) and with the recent resultby Elmegreen and Elmegreen; it is also consistent with the predictionsof density wave theory for the formation of the spiral structure.

Correlation functions of matter from galaxy rotation curves
Based on the disk-halo decomposition method introduced by Persic andSalucci (1988, 1990), 58 spiral rotation curves are used to measure thegalaxy-background correlation function in the range 3-350 kpc for H(0) =50 km/s per Mpc. It is found that (1) the two-point function is zeta(r)equal to about (r0/r) exp 1.76, with r(0) equal to about 7 Mpc (forOmega 0 = 1), and (2) higher order correlation functions are detected upto the sixth order and are found to fit the hierarchical expression.

The universal galaxy rotation curve
The correlation between the shape of the rotation curves and theluminosity is considered, and it is found that for a given luminositythe rotation curves within the optical radius are a universal function.This result implies strong systematic variations of the amplitude andthe profile of the circular velocity with luminosity. Faint galaxieshave low velocities and steep velocity gradients and bright galaxieshave high velocities and shallow velocity gradients. Because luminousdisks are self-similar, the observed progression of the shape ofrotation curves with luminosity suggests that the dark-to-visibleinterplay varies with luminosity.

Dependence of certain rotational properties of 78 spiral galaxies on Hubble's type and luminosity
Dependence of the central velocity gradients on Hubble's type ispresented for 78 spiral galaxies with existing rotation curves. Thedependence of the maximum rotational velocities of 27 galaxies on bothHubble's type and the luminosity is also studied. The central velocitygradient is shown to be related with Hubble's type. Maximum rotationalvelocities of 27 galaxies of the sample depend on Hubble's type suchthat the mean values of maximum rotational velocity decrease from Sathrough Sc. It is also determined that there is a dependence of themaximum rotational velocity on the absolute blue magnitude for eachintrinsic Hubble type. For each Hubble type, maximum rotational velocityincreases with increasing absolute blue magnitudes.

Kinematical observations of ordinary spiral galaxies - A bibliographical compilation
Data extracted from 280 papers reporting observations of the kinematicsof 245 nonbarred spiral galaxies are presented. Information is providedon the type of observations (instruments, spectral lines used, etc.) andthe derived geometrical and kinematical parameters of the galaxies(major axis position angle, inclination, heliocentric systemic velocity,maximum extension of the kinematical measurements, etc.). In addition,whenever possible, a 'mean' rotation curve has been considered, fromwhich the maximum rotational velocity of the galaxy and a parameterdescribing the essential shape of the rotation curve within r25 havebeen derived. Histograms illustrating the distribution of morphologicaltypes, inclinations, extensions of the kinematical measurements, andmaximum rotational velocities account for the statistical properties ofthis sample of spiral galaxies.

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Basakci
Sað Açýklýk:12h47m15.50s
Yükselim:-10°03'47.0"
Görünür Boyutlar:2.512′ × 1.148′

Kataloglar ve belirtme:
Özgün isimleri   (Edit)
NGC 2000.0NGC 4682
HYPERLEDA-IPGC 43147

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin