Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

NGC 7479


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Scale Heights of Non-Edge-on Spiral Galaxies
We present a method of calculating the scale height of non-edge-onspiral galaxies, together with a formula for errors. The method is basedon solving Poisson's equation for a logarithmic disturbance of matterdensity in spiral galaxies. We show that the spiral arms can not extendto inside the ``forbidden radius'' r0, due to the effect ofthe finite thickness of the disk. The method is tested by re-calculatingthe scale heights of 71 northern spiral galaxies previously calculatedby Ma, Peng & Gu. Our results differ from theirs by less than 9%. Wealso present the scale heights of a further 23 non-edge-on spiralgalaxies.

Constraining Dark Matter Halo Profiles and Galaxy Formation Models Using Spiral Arm Morphology. I. Method Outline
We investigate the use of spiral arm pitch angles as a probe of diskgalaxy mass profiles. We confirm our previous result that spiral armpitch angles (P) are well correlated with the rate of shear (S) in diskgalaxy rotation curves by using a much larger sample (51 galaxies) thanused previously (17 galaxies). We use this correlation to argue thatimaging data alone can provide a powerful probe of galactic massdistributions out to large look-back times. In contrast to previouswork, we show that observed spiral arm pitch angles are similar whenmeasured in the optical (at 0.4 μm) and the near-infrared (at 2.1μm) with a mean difference of 2.3d+/-2.7d. This is then used tostrengthen the known correlation between P and S using B-band images. Wethen use two example galaxies to demonstrate how an inferred shear ratecoupled with a bulge-disk decomposition model and a Tully-Fisher-derivedvelocity normalization can be used to place constraints on a galaxy'sbaryon fraction and dark matter halo profile. We show that ESO 582-G12,a galaxy with a high shear rate (slightly declining rotation curve) at~10 kpc, favors an adiabatically contracted halo, with high initial NFWconcentration (cvir>16) and a high fraction of halobaryons in the form of stars (~15%-40%). In contrast, IC 2522 has a lowshear rate (rising rotation curve) at ~10 kpc and favorsnonadiabatically contracted models with low NFW concentrations(cvir~=2-8) and a low stellar baryon fraction <10%.

Local and Large-Scale Environment of Seyfert Galaxies
We present a three-dimensional study of the local (<=100h-1 kpc) and the large-scale (<=1 h-1 Mpc)environment of the two main types of Seyfert AGN galaxies. For thispurpose we use 48 Seyfert 1 galaxies (with redshifts in the range0.007<=z<=0.036) and 56 Seyfert 2 galaxies (with0.004<=z<=0.020), located at high galactic latitudes, as well astwo control samples of nonactive galaxies having the same morphological,redshift, and diameter size distributions as the corresponding Seyfertsamples. Using the Center for Astrophysics (CfA2) and Southern SkyRedshift Survey (SSRS) galaxy catalogs (mB~15.5) and our ownspectroscopic observations (mB~18.5), we find that within aprojected distance of 100 h-1 kpc and a radial velocityseparation of δv<~600 km s-1 around each of ourAGNs, the fraction of Seyfert 2 galaxies with a close neighbor issignificantly higher than that of their control (especially within 75h-1 kpc) and Seyfert 1 galaxy samples, confirming a previoustwo-dimensional analysis of Dultzin-Hacyan et al. We also find that thelarge-scale environment around the two types of Seyfert galaxies doesnot vary with respect to their control sample galaxies. However, theSeyfert 2 and control galaxy samples do differ significantly whencompared to the corresponding Seyfert 1 samples. Since the maindifference between these samples is their morphological typedistribution, we argue that the large-scale environmental differencecannot be attributed to differences in nuclear activity but rather totheir different type of host galaxies.

Late-Time Radio Observations of 68 Type Ibc Supernovae: Strong Constraints on Off-Axis Gamma-Ray Bursts
We present late-time radio observations of 68 local Type Ibc supernovae,including six events with broad optical absorption lines(``hypernovae''). None of these objects exhibit radio emissionattributable to off-axis gamma-ray burst jets spreading into our line ofsight. Comparison with our afterglow models reveals the followingconclusions. (1) Less than ~10% of Type Ibc supernovae are associatedwith typical gamma-ray bursts initially directed away from our line ofsight; this places an empirical constraint on the GRB beaming factor of<~104, corresponding toan average jet opening angle, θj>~0.8d. (2) Thisholds in particular for the broad-lined supernovae (SNe 1997dq, 1997ef,1998ey, 2002ap, 2002bl, and 2003jd), which have been argued to host GRBjets. Our observations reveal no evidence for typical (or evensubenergetic) GRBs and rule out the scenario in which every broad-linedSN harbors a GRB at the 84% confidence level. Their large photosphericvelocities and asymmetric ejecta (inferred from spectropolarimetry andnebular spectroscopy) appear to be characteristic of the nonrelativisticSN explosion and do not necessarily imply the existence of associatedGRB jets.

The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424
Using extensive kinematical and morphological data on two Virgo Clustergalaxies undergoing strong nuclear star formation, we show that rampressure stripping and gravitational interactions can act together ongalaxies that have recently fallen into clusters. We present a detailedstudy of the peculiar H I-deficient Virgo Cluster spiral galaxies NGC4064 and NGC 4424 using 12CO 1-0 interferometry, opticalimaging, and integral field spectroscopic observations in order to learnwhat type of environmental interactions have affected these galaxies.Optical imaging reveals that NGC 4424 has a strongly disturbed stellardisk, with banana-shaped isophotes and shells. NGC 4064, which lies inthe cluster outskirts, possesses a relatively undisturbed outer stellardisk and a central bar. In both galaxies Hα emission is confinedto the central kiloparsec and originates in barlike strings of luminousstar-forming complexes surrounded by fainter filaments. Complexes ofyoung blue stars exist beyond the present location of ongoing starformation, indicating rapidly shrinking star-forming disks. Disturbeddust lanes extend out to a radius of 2-3 kpc, much farther than theHα and CO emission detected by us but similar to the blue stellarcomplexes. CO observations reveal bilobal molecular gas morphologies,with Hα emission peaking inside the CO lobes, implying a timesequence in the star formation process. Gas kinematics reveals strongbarlike noncircular motions in the molecular gas in both galaxies,suggesting that the material is radially infalling. In NGC 4064 thestellar kinematics reveals strong barlike noncircular motions in thecentral 1 kpc and stars supported by rotation with V/σ>1 beyonda radius of 15" (1.2 kpc). On the other hand, NGC 4424 has extremelymodest stellar rotation velocities (Vmax~30 kms-1), and stars are supported by random motions as far out aswe can measure, with V/σ=0.6 at r=18'' (1.4 kpc). Theionized gas kinematics in the core are disturbed and possiblycounterrotating. The observations suggest that the peculiarities of NGC4424 are the result of an intermediate-mass merger plus ram pressurestripping. In the case of NGC 4064, the evidence suggests an alreadystripped ``truncated/normal'' galaxy that recently suffered a minormerger or tidal interaction with another galaxy. Observations of thepresent star formation rate and gas content suggest that these galaxieswill become small-bulge S0s within the next 3 Gyr. We propose thatgalaxies with ``truncated/compact'' Hα morphologies such as theseare the result of the independent effects of ram pressure stripping,which removes gas from the outer disk, and gravitational interactionssuch as mergers, which heat stellar disks, drive gas to the centralkiloparsec, and increase the central mass concentrations. Together theseeffects transform the morphology of these galaxies.

Examining the Seyfert-Starburst Connection with Arcsecond-Resolution Radio Continuum Observations
We compare the arcsecond-scale circumnuclear radio continuum propertiesof five Seyfert and five starburst galaxies, concentrating on the searchfor any structures that could imply a spatial or causal connectionbetween the nuclear activity and a circumnuclear starburst ring. Noevidence is found in the radio emission for a link between thetriggering or feeding of nuclear activity and the properties ofcircumnuclear star formation. Conversely, there is no clear evidence ofnuclear outflows or jets triggering activity in the circumnuclear ringsof star formation. Interestingly, the difference in the angle betweenthe apparent orientation of the most elongated radio emission and theorientation of the major axis of the galaxy is on average larger inSeyfert galaxies than in starburst galaxies, and Seyfert galaxies appearto have a larger physical size scale of the circumnuclear radiocontinuum emission. The concentration, asymmetry, and clumpinessparameters of radio continuum emission in Seyfert galaxies andstarbursts are comparable, as are the radial profiles of radio continuumand near-infrared line emission. The circumnuclear star formation andsupernova rates do not depend on the level of nuclear activity. Theradio emission usually traces the near-infrared Brγ andH2 1-0 S(1) line emission on large spatial scales, butlocally their distributions are different, most likely because of theeffects of varying local magnetic fields and dust absorption andscattering.

On the X-ray, optical emission line and black hole mass properties of local Seyfert galaxies
We investigate the relation between X-ray nuclear emission, opticalemission line luminosities and black hole masses for a sample of 47Seyfert galaxies. The sample, which has been selected from the Palomaroptical spectroscopic survey of nearby galaxies (Ho et al. 1997a, ApJS,112, 315), covers a wide range of nuclear powers, from L2-10keV ~ 1043 erg/s down to very low luminosities(L2-10 keV ~ 1038 erg/s). Best available data fromChandra, XMM-Newton and, in a few cases, ASCA observations have beenconsidered. Thanks to the good spatial resolution available from theseobservations and a proper modeling of the various spectral components,it has been possible to obtain accurate nuclear X-ray luminosities notcontaminated by off-nuclear sources and/or diffuse emission. X-rayluminosities have then been corrected taking into account the likelycandidate Compton thick sources, which are a high fraction (>30%)among type 2 Seyferts in our sample. The main result of this study isthat we confirm strong linear correlations between 2-10 keV,[OIII]λ5007, Hα luminosities which show the same slope asquasars and luminous Seyfert galaxies, independent of the level ofnuclear activity displayed. Moreover, despite the wide range ofEddington ratios (L/L_Edd) tested here (six orders of magnitude, from0.1 down to ~10-7), no correlation is found between the X-rayor optical emission line luminosities and the black hole mass. Ourresults suggest that Seyfert nuclei in our sample are consistent withbeing a scaled-down version of more luminous AGN.

The Hα Galaxy Survey . III. Constraints on supernova progenitors from spatial correlations with Hα emission
Aims.We attempt to constrain progenitors of the different types ofsupernovae from their spatial distributions relative to star formationregions in their host galaxies, as traced by Hα + [Nii] lineemission. Methods: .We analyse 63 supernovae which have occurredwithin galaxies from our Hα survey of the local Universe. Threestatistical tests are used, based on pixel statistics, Hα radialgrowth curves, and total galaxy emission-line fluxes. Results:.Many type II supernovae come from regions of low or zero emission lineflux, and more than would be expected if the latter accurately traceshigh-mass star formation. We interpret this excess as a 40% "Runaway"fraction in the progenitor stars. Supernovae of types Ib and Ic doappear to trace star formation activity, with a much higher fractioncoming from the centres of bright star formation regions than is thecase for the type II supernovae. Type Ia supernovae overall show a weakcorrelation with locations of current star formation, but there isevidence that a significant minority, up to about 40%, may be linked tothe young stellar population. The radial distribution of allcore-collapse supernovae (types Ib, Ic and II) closely follows that ofthe line emission and hence star formation in their host galaxies, apartfrom a central deficiency which is less marked for supernovae of typesIb and Ic than for those of type II. Core-collapse supernova ratesoverall are consistent with being proportional to galaxy totalluminosities and star formation rates; however, within this total thetype Ib and Ic supernovae show a moderate bias towards more luminoushost galaxies, and type II supernovae a slight bias towardslower-luminosity hosts.

The AMIGA sample of isolated galaxies. II. Morphological refinement
We present a refinement of the optical morphologies for galaxies in theCatalog of Isolated Galaxies that forms the basis of the AMIGA (Analysisof the interstellar Medium of Isolated GAlaxies) project. Uniformreclassification using the digitized POSS II data benefited from thehigh resolution and dynamic range of that sky survey. Comparison withindependent classifications made for an SDSS overlap sample of more than200 galaxies confirms the reliability of the early vs. late-typediscrimination and the accuracy of spiral subtypes within Δ T =1-2. CCD images taken at the Observatorio de Sierra Nevada were alsoused to solve ambiguities in early versus late-type classifications. Aconsiderable number of galaxies in the catalog (n = 193) are flagged forthe presence of nearby companions or signs of distortion likely due tointeraction. This most isolated sample of galaxies in the local Universeis dominated by two populations: 1) 82% are spirals (Sa-Sd) with thebulk being luminous systems with small bulges (63% between types Sb-Sc)and 2) a significant population of early-type E-S0 galaxies (14%). Mostof the types later than Sd are low luminosity galaxies concentrated inthe local supercluster where isolation is difficult to evaluate. Thelate-type spiral majority of the sample spans a luminosity rangeMB-corr = -18 to -22 mag. Few of the E/S0 population are moreluminous than -21.0 marking the absence of the often-sought superL* merger (e.g. fossil elliptical) population. The rarity ofhigh luminosity systems results in a fainter derived M* forthis population compared to the spiral optical luminosity function(OLF). The E-S0 population is from 0.2 to 0.6 mag fainter depending onhow the sample is defined. This marks the AMIGA sample as unique amongsamples that compare early and late-type OLFs separately. In othersamples, which always involve galaxies in higher density environments,M^*_E/S0 is almost always 0.3-0.5 mag brighter than M^*_S, presumablyreflecting a stronger correlation between M* andenvironmental density for early-type galaxies.

Massive star formation in the central regions of spiral galaxies
Context: . The morphology of massive star formation in the centralregions of galaxies is an important tracer of the dynamical processesthat govern the evolution of disk, bulge, and nuclear activity. Aims. Wepresent optical imaging of the central regions of a sample of 73 spiralgalaxies in the Hα line and in optical broad bands, and deriveinformation on the morphology of massive star formation. Methods. Weobtained images with the William Herschel Telescope, mostly at a spatialresolution of below one second of arc. For most galaxies, no Hαimaging is available in the literature. We outline the observing anddata reduction procedures, list basic properties, and present the I-bandand continuum-subtracted Hα images. We classify the morphology ofthe nuclear and circumnuclear Hα emission and explore trends withhost galaxy parameters. Results. We confirm that late-type galaxies havea patchy circumnuclear appearance in Hα, and that nuclear ringsoccur primarily in spiral types Sa-Sbc. We identify a number ofpreviously unknown nuclear rings, and confirm that nuclear rings arepredominantly hosted by barred galaxies. Conclusions. Other than instimulating nuclear rings, bars do not influence the relative strengthof the nuclear Hα peak, nor the circumnuclear Hα morphology.Even considering that our selection criteria led to an over-abundance ofgalaxies with close massive companions, we do not find any significantinfluence of the presence or absence of a close companion on therelative strength of the nuclear Hα peak, nor on the Hαmorphology around the nucleus.

The lifetime of galactic bars: central mass concentrations and gravity torques
Bars in gas-rich spiral galaxies are short-lived. They drive gas inflowsthrough their gravity torques, and at the same time self-regulate theirstrength. Their robustness has been subject of debate, as it was thoughtthat only the resulting central mass concentrations (CMCs) wereweakening bars, and only relatively rare massive CMCs were able tocompletely destroy them. Through numerical simulations including gasdynamics, we find that with the gas parameters of normal spiralgalaxies, the CMC is not sufficient to fully dissolve the bar. Butanother overlooked mechanism, the transfer of angular momentum from theinfalling gas to the stellar bar, can also strongly weaken the bar. Inaddition, we show that gravity torques are correctly reproduced insimulations, and conclude that bars are transient features, withlifetime of 1-2 Gyr in typical Sb-Sc galaxies, because of the combinedeffects of CMCs and gravity torques, while most existing works hadfocussed on the CMC effects alone.

GHASP: an Hα kinematic survey of spiral and irregular galaxies - IV. 44 new velocity fields. Extension, shape and asymmetry of Hα rotation curves
We present Fabry-Perot observations obtained in the frame of the GHASPsurvey (Gassendi HAlpha survey of SPirals). We have derived the Hαmap, the velocity field and the rotation curve for a new set of 44galaxies. The data presented in this paper are combined with the datapublished in the three previous papers providing a total number of 85 ofthe 96 galaxies observed up to now. This sample of kinematical data hasbeen divided into two groups: isolated (ISO) and softly interacting(SOFT) galaxies. In this paper, the extension of the Hα discs, theshape of the rotation curves, the kinematical asymmetry and theTully-Fisher relation have been investigated for both ISO and SOFTgalaxies. The Hα extension is roughly proportional toR25 for ISO as well as for SOFT galaxies. The smallestextensions of the ionized disc are found for ISO galaxies. The innerslope of the rotation curves is found to be correlated with the centralconcentration of light more clearly than with the type or thekinematical asymmetry, for ISO as well as for SOFT galaxies. The outerslope of the rotation curves increases with the type and with thekinematical asymmetry for ISO galaxies but shows no special trend forSOFT galaxies. No decreasing rotation curve is found for SOFT galaxies.The asymmetry of the rotation curves is correlated with themorphological type, the luminosity, the (B-V) colour and the maximalrotational velocity of galaxies. Our results show that the brightest,the most massive and the reddest galaxies, which are fast rotators, arethe least asymmetric, meaning that they are the most efficient withwhich to average the mass distribution on the whole disc. Asymmetry inthe rotation curves seems to be linked with local star formation,betraying disturbances of the gravitational potential. The Tully-Fisherrelation has a smaller slope for ISO than for SOFT galaxies.

BHαBAR: big Hα kinematical sample of barred spiral galaxies - I. Fabry-Perot observations of 21 galaxies
We present the Hα gas kinematics of 21 representative barredspiral galaxies belonging to the BHαBAR sample. The galaxies wereobserved with FaNTOmM, a Fabry-Perot integral-field spectrometer, onthree different telescopes. The three-dimensional data cubes wereprocessed through a robust pipeline with the aim of providing the mosthomogeneous and accurate data set possible useful for further analysis.The data cubes were spatially binned to a constant signal-to-noiseratio, typically around 7. Maps of the monochromatic Hα emissionline and of the velocity field were generated and the kinematicalparameters were derived for the whole sample using tilted-ring models.The photometrical and kinematical parameters (position angle of themajor axis, inclination, systemic velocity and kinematical centre) arein relative good agreement, except perhaps for the later-type spirals.

The Central Region of Barred Galaxies: Molecular Environment, Starbursts, and Secular Evolution
Stellar bars drive gas into the circumnuclear (CN) region of galaxies.To investigate the fate of the CN gas and star formation (SF), we studya sample of barred nonstarbursts and starbursts with high-resolution CO,optical, Hα, radio continuum, Brγ, and HST data, and findthe following. (1) The inner kiloparsec of bars differs markedly fromthe outer disk. It hosts molecular gas surface densitiesΣgas-m of 500-3500 Msolar pc-2,gas mass fractions of 10%-30%, and epicyclic frequencies of several100-1000 km s-1 kpc-1. Consequently, in the CNregion gravitational instabilities can only grow at high gas densitiesand on short timescales, explaining in part why powerful starburstsreside there. (2) Across the sample, we find bar pattern speeds withupper limits of 43-115 km s-1 pc-1 and outer innerLindblad resonance radii of >500 pc. (3) Barred starbursts andnonstarbursts have CN SF rates of 3-11 and 0.1-2 Msolaryr-1, despite similar CN gas masses. TheΣgas-m value in the starbursts is larger (1000-3500Msolar pc-2) and close to the Toomre criticaldensity over a large region. (4) Molecular gas makes up 10%-30% of theCN dynamical mass and fuels large CN SF rates in the starbursts,building young, massive, high-V/σ components. Implications forsecular evolution along the Hubble sequence are discussed.

EGRET Upper Limits and Stacking Searches of Gamma-Ray Observations of Luminous and Ultraluminous Infrared Galaxies
We present a stacking analysis of EGRET γ-ray observations at thepositions of luminous and ultraluminous infrared galaxies. The latterwere selected from the recently presented HCN survey, which is thoughtto contain the most active star-forming regions of the universe.Different sorting criteria are used, and since there is no positivecollective detection of γ-ray emission from these objects, wedetermined both collective and individual upper limits. The uppermostexcess we find appears in the case of ULIRGs ordered by redshift, at avalue of 1.8 σ.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

High Spatial Resolution Mid-Infrared Observations of Five Seyfert Galaxies
High spatial resolution images at 12.5 μm of the nuclei of fivenearby Seyfert galaxies-I Zwicky 1, NGC 1320, NGC 2992, M81, and NGC7479-have been obtained with the 10 m Keck Telescope. The angular sizelimits indicate that under typical conditions the Keck Telescope showsan unresolved nucleus for these active galactic nuclei. In all cases,the lower limit to the infrared surface brightness is above3×1012 Lsolar kpc-2 this arguesthat nuclear starbursts do not contribute significantly to the infraredluminosities in these nuclei.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

Structural parameters of nearby emission-line galaxies
We present the results of an investigation on the main structuralproperties derived from VRI and Hα surface photometry of galaxieshosting nuclear emission-line regions [including Seyfert 1, Seyfert 2,low-ionization nuclear emission region (LINER) and starburst galaxies]as compared with normal galaxies. Our original sample comprises 22active galaxies, four starbursts and one normal galaxy and has beenextended with several samples obtained from the literature. Bulge anddisc parameters, along with the bulge-to-disc luminosity ratio, havebeen derived applying an iterative procedure. The resulting parametershave been combined with additional data in order to reach astatistically significant sample. We find some differences in the bulgedistribution across the different nuclear types that could implyfamilies of bulges with different physical properties. Bulge and disccharacteristic colours have been defined and derived for our sample andcompared with a control sample of early-type objects. The resultssuggest that bulge and disc stellar populations are comparable in normaland active galaxies.

The infrared continuum of active galactic nuclei
We discuss the different physical processes contributing to the infraredcontinuum of active galactic nuclei (AGNs), assuming that bothphotoionization from the active centre and shocks ionize and heat thegas and dust contained in an ensemble of clouds surrounding the nucleus.In our model, radiation transfer of primary and secondary radiationthroughout a cloud is calculated consistently with collisional processesdue to the shock. We consider that the observed continuum corresponds toreprocessed radiation from both dust and gas in the clouds. Collisionalprocesses are important in the presence of shocks. The grains aresputtered crossing the shock front. The models are constrained bysputtering as well as by the far-infrared data. The model is applied tothe continuum of Seyfert galaxies from which the best estimate of thenuclear, stellar subtracted, emission is available. The results showthat radiation-dominated high-velocity clouds are more numerous inSeyfert 1-1.5 whereas shock-dominated low-velocity clouds are dominantin Seyfert type 2. This result is in full agreement with the unifiedmodel for AGNs, by which high-velocity clouds, placed deeper into thecentral region and therefore reached by a more intense radiation, shouldplay a more significant role in the spectra of broad-line objects. Wecould therefore conclude that in type 2 objects, radiation is partlysuppressed by a central dusty medium with a high dust-to-gas ratio. Oncethe model approach is tested, a grid of models is used to provide aphenomenological analysis of the observed infrared spectral energydistribution. This empirical method is a useful tool to rapidly accessthe physical conditions of the AGN emitting clouds. For this, analyticalforms are derived for the two processes contributing to the infraredemission: dust emission and thermal bremsstrahlung produced by thenarrow-line region clouds. Their relative contribution provides ameasurement of the dust-to-gas ratio.

HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
We report systematic HCN J=1-0 (and CO) observations of a sample of 53infrared (IR) and/or CO-bright and/or luminous galaxies, including sevenultraluminous infrared galaxies, nearly 20 luminous infrared galaxies,and more than a dozen of the nearest normal spiral galaxies. This is thelargest and most sensitive HCN survey of galaxies to date. All galaxiesobserved so far follow the tight correlation between the IR luminosityLIR and the HCN luminosity LHCN initially proposedby Solomon, Downes, & Radford, which is detailed in a companionpaper. We also address here the issue of HCN excitation. There is noparticularly strong correlation between LHCN and the 12 μmluminosity; in fact, of all the four IRAS bands, the 12 μm luminosityhas the weakest correlation with the HCN luminosity. There is also noevidence of stronger HCN emission or a higher ratio of HCN and COluminosities LHCN/LCO for galaxies with excess 12μm emission. This result implies that mid-IR radiative pumping, orpopulating, of the J=1 level of HCN by a mid-IR vibrational transitionis not important compared with the collisional excitation by densemolecular hydrogen. Furthermore, large velocity gradient calculationsjustify the use of HCN J=1-0 emission as a tracer of high-densitymolecular gas (>~3×104/τcm-3) andgive an estimate of the mass of dense molecular gas from HCNobservations. Therefore, LHCN may be used as a measure of thetotal mass of dense molecular gas, and the luminosity ratioLHCN/LCO may indicate the fraction of moleculargas that is dense.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Hydrocarbon Dust Absorption in Seyfert Galaxies and Ultraluminous Infrared Galaxies
We present new spectroscopic observations of the 3.4 μm absorptionfeature in the Seyfert galaxies NGC 1068 and NGC 7674 and theultraluminous infrared galaxy IRAS 08572+3915. A signature of CH bondsin aliphatic hydrocarbons, the 3.4 μm feature indicates the presenceof organic material in Galactic and extragalactic dust. Here we comparethe 3.4 μm feature in all the galaxies in which it has been detected.In several cases, the signal-to-noise ratio and spectral resolutionpermit a detailed examination of the feature profile, something whichhas rarely been attempted in extragalactic lines of sight. The 3.4 μmband in these galaxies closely resembles that seen in the Galacticdiffuse interstellar medium (ISM) and in newly formed dust in aprotoplanetary nebula. The similarity implies a common carrier for thecarbonaceous component of dust, and one which is resistant to processingin the interstellar and/or circumnuclear medium. We also examine themid-IR spectrum of NGC 1068, because absorption bands in the 5-8 μmregion further constrain the chemistry of the 3.4 μm band carrier.While weak features like those present in the mid-IR spectrum of diffusedust toward the Galactic center would be undetectable in NGC 1068, thestrong bands found in the spectra of many proposed dust analog materialsare clearly absent, eliminating certain candidates and productionmechanisms for the carrier. The absence of strong absorption features at5-8 μm is also consistent with the interpretation that the similarityin the 3.4 μm feature in NGC 1068 to that in Galactic lines of sightreflects real chemical similarity in the carbonaceous dust.Based on observations with the UK Infrared Telescope, Mauna KeaObservatory, Hawaii.

Comparison of Bar Strengths and Fractions of Bars in Active and Nonactive Galaxies
Gravitational perturbation strengths and bar fractions in active andnonactive galaxies are compared using the Ohio State University BrightGalaxy Survey, which forms a statistically well defined sample of 180disk galaxies. Bar fractions are studied using (1) the optical andnear-IR classification of bars made by Eskridge and coworkers in 2002and (2) our own bar classification based on Fourier decomposition ofnear-IR images (Fourier bars). The gravitational perturbation strengthsare calculated using the bar torque method, taking the maximum ratioQg of the tangential force to the mean background radialforce as a measure of the nonaxisymmetric perturbation. In addition,two-dimensional bulge-disk-bar decomposition is used to study theproperties of bulges of the sample galaxies. In the near-IR, Seyfertgalaxies, LINERs, and H II/starburst galaxies were found to have asimilar fraction, 72%, of Fourier bars (or SB-type bars), compared to55% in the nonactive galaxies. However, if SAB-type bars are alsoincluded, practically all (95%) H II/starburst galaxies have bars. Inaddition, a large fraction (34%) of bars in LINERs are obscured by dustin the optical region. We find that bars in early-type galaxies are atthe same time long and massive and have weak perturbation strengths.Weak perturbation strengths can be explained by dilution of thenonaxisymmetric forces by the massive bulges: for a bulge-to-disk massratio B/D ranging from 0 to 1, the dilution may reduce Qgfrom as high as 0.6 to as low as 0.1. On the other hand, bar length(relative to disk scale length) is not correlated with B/D, contrary toexpectation. Seyfert- or LINER-type nuclear activity is present in mostgalaxies that have thin and thick planar bar components, whereas nuclearactivity does not appear in those late-type galaxies that have extremelymassive bars and strong perturbation strengths.

The Star Formation Rate and Dense Molecular Gas in Galaxies
HCN luminosity is a tracer of dense molecular gas,n(H2)>~3×104cm-3, associatedwith star-forming giant molecular cloud (GMC) cores. We present theresults and analysis of our survey of HCN emission from 65 infraredgalaxies, including nine ultraluminous infrared galaxies (ULIGs,LIR>~1012Lsolar), 22 luminousinfrared galaxies (LIGs,1011Lsolar0.06 are LIGs or ULIGs. Normal spiralsall have similar and low dense gas fractionsLHCN/LCO=0.02-0.05. The global star formationefficiency depends on the fraction of the molecular gas in a densephase.

A Search for Kinematic Evidence of Radial Gas Flows in Spiral Galaxies
CO and H I velocity fields of seven nearby spiral galaxies, derived fromradio-interferometric observations, are decomposed into Fouriercomponents whose radial variation is used to search for evidence ofradial gas flows. Additional information provided by optical ornear-infrared isophotes is also considered, including the relationshipbetween the morphological and kinematic position angles. To assist ininterpreting the data, we present detailed modeling that demonstratesthe effects of bar streaming, inflow, and a warp on the observed Fouriercomponents. We find in all of the galaxies evidence for eitherelliptical streaming or a warped disk over some range in radius, withdeviations from pure circular rotation at the level of ~20-60 kms-1. Evidence for kinematic warps is observed in severalcases well inside R25. No unambiguous evidence for radialinflows is seen in any of the seven galaxies, and we are able to placean upper limit of ~5-10 km s-1 (3%-5% of the circular speed)on the magnitude of any radial inflow in the inner regions of NGC 4414,NGC 5033, and NGC 5055. We conclude that the inherent nonaxisymmetry ofspiral galaxies is the greatest limitation to the direct detection ofradial inflows.

Gravitational Bar and Spiral Arm Torques from Ks-band Observations and Implications for the Pattern Speeds
We have obtained deep near-infrared Ks-band William HerschelTelescope observations of a sample of 15 nearby spiral galaxies having arange of Hubble types and apparent bar strengths. The near-infraredlight distributions are converted into gravitational potentials, and themaximum relative gravitational torques due to the bars and the spiralsare estimated. We find that spiral strength, Qs, and barstrength, Qb, correlate well with other measures of spiralarm and bar amplitudes and that spiral and bar strengths also correlatewell with each other. We also find a correlation between the positionangle of the end of the bar and the position angle of the inner spiral.These correlations suggest that the bars and spirals grow together withthe same rates and pattern speeds. We also show that the strongest barstend to have the most open spiral patterns. Because open spirals implyhigh disk-to-halo mass ratios, bars and spirals most likely growtogether as a combined disk instability. They stop growing for differentreasons, however, giving the observed variation in bar-spiralmorphologies. Bar growth stops because of saturation when most of theinner disk is in the bar, and spiral growth stops because of increasedstability as the gas leaves and the outer disk heats up.

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Minor-axis velocity gradients in disk galaxies
We present the ionized-gas kinematics and photometry of a sample of 4spiral galaxies which are characterized by a zero-velocity plateau alongthe major axis and a velocity gradient along the minor axis,respectively. By combining these new kinematical data with thoseavailable in the literature for the ionized-gas component of the S0s andspirals listed in the Revised Shapley-Ames Catalog of Bright Galaxies werealized that about 50% of unbarred galaxies show a remarkable gasvelocity gradient along the optical minor axis. This fraction rises toabout 60% if we include unbarred galaxies with an irregular velocityprofile along the minor axis. This phenomenon is observed all along theHubble sequence of disk galaxies, and it is particularly frequent inearly-type spirals. Since minor-axis velocity gradients are unexpectedif the gas is moving onto circular orbits in a disk coplanar to thestellar one, we conclude that non-circular and off-plane gas motions arenot rare in the inner regions of disk galaxies.Based on observations carried out at the European Southern Observatoryin La Silla (Chile) (ESO 69.B-0706 and 70.B-0338), with the MultipleMirror Telescope which is a joint facility of the SmithsonianInstitution and the University of Arizona, and with the ItalianTelescopio Nazionale Galileo (AOT-5, 3-18) at the Observatorio del Roquede los Muchachos in La Palma (Spain).Table 1 is only available in electronic form athttp://www.edpsciences.org. Table 5 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/507

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Пегаз
Ректацензија:23h04m56.60s
Deклинација:+12°19'22.0"
Привидна димензија:3.802′ × 2.884′

Каталог и designations:
Proper имена   (Edit)
NGC 2000.0NGC 7479
HYPERLEDA-IPGC 70419

→ Захтевај још каталога од VizieR