Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

NGC 6286


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Radio properties of FIR-megamaser nuclei
Aims.Radio data on the nuclear emissions have been used to characterizethe dominant nuclear activity in a sample of FIR (ultra-) luminousgalaxies and the subgroup of known OH Megamasers. This study complementsan earlier study of the optical classification of these Megamasernuclei.Methods.Classification of the radio activity in the nuclei isbased on three critical parameters: the radio brightness temperature,the radio spectral index, and the ratio of FIR and radio fluxes. A firstmethod gives equal weight to the three parameters and a second methoduses a weighted function to classify the nuclei.Results.The presentsample shows that only 43% of the sample shows some - weak or strong -AGN characteristics. About 66% of the OH-MM sample and 81% of thenon-OH-MM sample can be actually classified as Starburst-dominatedsources. Radio diagnostic diagrams using these diagnostic parametersshow a continuous distribution ranging between AGN-dominated andSBN-dominated sources. The diagnostic diagrams also support the notionthat AGNs and starbursts coexist in the nuclei.Conclusions.A comparisonof the radio and optical classifications shows a consistency in theextreme cases of clear SBN and AGNs. A significant part of the sourceswith optical AGN-like activity have an SBN classification in the radio.The discrepant classifications are discussed in order to arrive at afinal classification of the dominant power source in the nucleus.

AM 1934-563: a giant spiral polar-ring galaxy in a triplet
We have observed the emission-line kinematics and photometry of asouthern triplet of galaxies. The triplet contains a giant spiral galaxyAM 1934-563 whose optical structure resembles a polar-ring galaxy: adistorted spiral disk, seen almost edge-on, and a faint large-scale (45kpc in diameter) warped structure, inclined by 60°-70° withrespect to the disk major axis. The triplet shows a relatively smallvelocity dispersion (69 km s-1) and a large crossing time(0.17 in units of the Hubble time). The disk of AM 1934-563 demonstratesoptical colors typical of early-type spirals, a strong radial colorgradient, and almost exponential surface brightness distribution with anexponential scale-length value of 3.1 kpc (R passband). The galaxy showsa maximum rotation velocity of about 200 km s-1 and it liesclose to the Tully-Fisher relation for spiral galaxies. The suspectedpolar ring is faint (μ(B) ≥ 24) and strongly warped. Its totalluminosity comprises 10-15% of the total luminosity of AM 1934-563. Wemodel this system using numerical simulations, and study its possibleformation mechanisms. We find that the most robust model that reproducesthe observed characteristics of the ring and the host galaxy is thetidal transfer of mass from a massive gas-rich donor galaxy to the polarring. The physical properties of the triplet of galaxies are inagreement with this scenario.

The Second Byurakan Survey. General Catalogue
The Second Byurakan Survey (SBS) General Catalogue is presented. TheSBS, a continuation of the Markarian survey reaching fainter limitingmagnitudes, is the first survey which combines the search of galaxiesand QSOs. A total area of 991OS#square;degrees of the Northern sky wascovered with the use of three objective prisms in combination withSchott filters. The limited magnitude on the best plates reached B ~19.5.The General Catalogue consists of 3563 objects presented in two parts: aCatalogue of galaxies (1863 objects) and one of stellar objects (1700objects). The Catalogue of SBS AGN consists of 761 objects (155 SyG, 596QSOs, and 10 BLLac). Multi-wavelength data are presented for 1438 SBSobjects identified with X-ray, IRAS and FIRST sources.Spectrophotometric observations obtained over 26 years are available for3132 objects. Redshifts were measured for ~ 2100 extragalactic objects.Spectral classification is presented for ~ 2970 objects. The majority ofthe data is presented here for the first time. The Catalogue presentsnew large homogeneous deep representative complete samples of brightQSOs, AGNs, and faint UVX galaxies in the Northern sky. The SBS sampleis found to be complete at 70% for galaxies and ~ 85% for AGN/QSOs withB ≤ 17.5.

The evolution of actively star-forming galaxies in the mid-infrared
In this paper we analyze the evolution of actively star-forming galaxiesin the mid-infrared (MIR). This spectral region, characterized bycontinuum emission by hot dust and by the presence of strong emissionfeatures generally ascribed to polycyclic aromatic hydrocarbon (PAH)molecules, is the most strongly affected by the heating processesassociated with star formation and/or active galactic nuclei (AGNs).Following the detailed observational characterization of galaxies in theMIR by the Infrared Space Observatory (ISO), we have updated themodelling of this spectral region in our spectrophotometric modelGRASIL. In the diffuse component we have updated the treatment of PAHsaccording to the model by Li & Draine. As for the dense phase of theinterstellar medium associated with the star-forming regions, themolecular clouds, we strongly decrease the abundance of PAHs as comparedto that in the cirrus, based on the observational evidence of the lackor weakness of PAH bands close to the newly formed stars, possibly dueto the destruction of the molecules in strong ultraviolet fields. Therobustness of the model is checked by fitting near-infrared to radiobroad-band spectra and the corresponding detailed MIR spectra of a largesample of galaxies, at once. With this model, we have analyzed thelarger sample of actively star-forming galaxies by Dale et al. We showthat the observed trends of galaxies in the ISO-IRAS-radio colour-colourplots can be interpreted in terms of the different evolutionary phasesof star formation activity, and the consequent different dominance inthe spectral energy distribution of the diffuse or dense phase of theISM. We find that the observed colours indicate a surprising homogeneityof the starburst phenomenon, allowing only a limited variation of themost important physical parameters, such as the optical depth of themolecular clouds, the time-scale of the escape of young stars from theirfor mation sites, and the gas consumption time-scale. In this paper wedo not attempt to reproduce the far-infrared coolest region in thecolour-colour plots, as we concentrate on models meant to reproduceactive star-forming galaxies, but we discuss possible requirements of amore complex modelling for the coldest objects.

Warm, Dense Molecular Gas in the ISM of Starbursts, LIRGs, and ULIRGs
The role of star formation in luminous and ultraluminous infraredgalaxies (LIRGs, LIR>=1011 LsolarULIRGs, LIR>=1012 Lsolar) is a hotlydebated issue: while it is clear that starbursts play a large role inpowering the IR luminosity in these galaxies, the relative importance ofpossible enshrouded AGNs is unknown. It is therefore important to betterunderstand the role of star-forming gas in contributing to the infraredluminosity in IR-bright galaxies. The J=3 level of 12CO lies33 K above ground and has a critical density of~1.5×104 cm-3. The 12CO J=3-2line serves as an effective tracer for warm, dense molecular gas heatedby active star formation. Here we report on 12CO J=3-2observations of 17 starburst spiral galaxies, LIRGs, and ULIRGs, whichwe obtained with the Heinrich Hertz Submillimeter Telescope on MountGraham, Arizona. Our main results are as follows. (1) We find a nearlylinear relation between the infrared luminosity and warm, densemolecular gas such that the infrared luminosity increases as the warm,dense molecular gas to the power 0.92; we interpret this to be roughlyconsistent with the recent results of Gao & Solomon. (2) We findLIR/MH2warm,dense ratios ranging from~38 to ~482 Lsolar/Msolar using a modifiedCO-H2 conversion factor of 8.3×1019cm-2 (K km s-1)-1 derived in thispaper.

The Phenomenon of the Galaxy NGC 6286: A Forming Polar Ring or a Superwind?
We present our observations of the pair of interacting galaxies NGC6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO)telescope using 1D and 2D spectroscopy. The observations of NGC 6286with a long-slit spectrograph (UAGS) near the H_alpha line revealed therotation of the gaseous disk around an axis offset by 5"-7" from thephotometric center and a luminous gas at a distance up to 9 kpc in adirection perpendicular to the galactic plane. Using a multipupil fiberspectrograph (MPFS), we constructed the velocity fields of the stellarand gaseous components in the central region of this galaxy, whichproved to be similar. The close radial velocities of the pair and thewide (5' x 5') field of view of the scanning Fabry-Perot interferometer(IFP) allowed us to simultaneously obtain images in the H_alpha and [NII] lambda 6583 lines and in the continuum, as well as to construct theradial velocity fields and to map the distribution of the [N II] lambda6583/H_alpha ratio for both galaxies. Based on all these data, westudied the gas kinematics in the galaxies, constructed their rotationcurves, and estimated their masses (2 x 10^{11} M_solar for NGC 6286 and1.2 x 10^{10} M_solar for NGC 6285). We found no evidence of gasrotation around the major axis of NGC 6286, which argues against theassumption that this galaxy has a forming polar ring. The IFPobservations revealed an emission nebula around this galaxy with astructure characteristic of superwind galaxies. The large [N II] lambda6583/H_aplha ratio, which suggests the collisional excitation of itsemission, and the high infrared luminosity are additional arguments forthe hypothesis of a superwind in the galaxy NGC 6286. A close encounterbetween the two galaxies was probably responsible for the starburst andthe bipolar outflow of hot gas from the central region of the disk.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

A Uniform Database of 2.2-16.5 μm Spectra from the ISOCAM CVF Spectrometer
We present all ISOCAM circular variable filter (CVF) spectra that covermore than one-third of the 2.2-16.5 μm spectral range of theinstrument. The 364 spectra have been classified according to theclassification system of Kraemer et al., as modified by Hodge et al. toaccount for the shorter wavelength range. Prior to classification, thespectra were processed and recalibrated to create a uniform database.Aperture photometry was performed at each wavelength centered on thebrightest position in each image field and the various spectral segmentsmerged into a single spectrum. The aperture was the same for all scalesizes of the images. Since this procedure differs fundamentally fromthat used in the initial ISOCAM calibration, a recalibration of thespectral response of the instrument was required for the aperturephotometry. The recalibrated spectra and the software used to createthem are available to the community on-line via the ISO Data Archive.Several new groups were added to the KSPW system to describe spectrawith no counterparts in either the SWS or PHT-S databases: CA, E/SA,UE/SA, and SSA. The zodiacal dust cloud provides the most commonbackground continuum to the spectral features, visible in almost 40% ofthe processed sources. The most characteristic and ubiquitous spectralfeatures observed in the CVF spectral atlas are those of theunidentified infrared bands (UIR), which are typically attributed toultraviolet-excited fluorescence of large molecules containing aromatichydrocarbons. The UIR features commonly occur superimposed on thezodiacal background (18%) but can also appear in conjunction with otherspectral features, such as fine-structure emission lines or silicateabsorption. In at least 13 of the galaxies observed, the pattern of UIRemission features has been noticeably shifted to longer wavelengths.Based on observations with the Infrared Space Observatory, a EuropeanSpace Agency (ESA) project with instruments funded by ESA Member States(especially the Principal Investigator countries: France, Germany, theNetherlands, and the United Kingdom) and with the participation of theInstitute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

An IRAS High Resolution Image Restoration (HIRES) Atlas of All Interacting Galaxies in the IRAS Revised Bright Galaxy Sample
The importance of far-infrared observations for our understanding ofextreme activity in interacting and merging galaxies has beenillustrated by many studies. Even though two decades have passed sinceits launch, the most complete all-sky survey to date from which far-IRselected galaxy samples can be chosen is still that of the InfraredAstronomical Satellite (IRAS). However, the spatial resolution of theIRAS all-sky survey is insufficient to resolve the emission fromindividual galaxies in most interacting galaxy pairs, and hence previousstudies of their far-IR properties have had to concentrate either onglobal system properties or on the properties of very widely separatedand weakly interacting pairs. Using the HIRES image reconstructiontechnique, it is possible to achieve a spatial resolution ranging from30" to 1.5m (depending on wavelength and detector coverage), whichis a fourfold improvement over the normal resolution of IRAS. This issufficient to resolve the far-IR emission from the individual galaxiesin many interacting systems detected by IRAS, which is very importantfor meaningful comparisons with single, isolated galaxies. We presenthigh-resolution 12, 25, 60, and 100 μm images of 106 interactinggalaxy systems contained in the IRAS Revised Bright Galaxy Sample (RBGS,Sanders et al.), a complete sample of all galaxies having a 60 μmflux density greater than 5.24 Jy. These systems were selected to haveat least two distinguishable galaxies separated by less than threeaverage galactic diameters, and thus we have excluded very widelyseparated systems and very advanced mergers. Additionally, some systemshave been included that are more than three galactic diameters apart,yet have separations less than 4' and are thus likely to suffer fromconfusion in the RBGS. The new complete survey has the same propertiesas the prototype survey of Surace et al. We find no increased tendencyfor infrared-bright galaxies to be associated with other infrared-brightgalaxies among the widely separated pairs studied here. We find smallenhancements in far-IR activity in multiple galaxy systems relative toRBGS noninteracting galaxies with the same blue luminosity distribution.We also find no differences in infrared activity (as measured byinfrared color and luminosity) between late- and early-type spiralgalaxies.

Optical Imaging of Very Luminous Infrared Galaxy Systems: Photometric Properties and Late Evolution
A sample of 19 low-redshift (0.03

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

Seyfert galaxies in UZC-Compact Groups
We present results concerning the occurrence of Seyfert galaxies in anew automatically selected sample of nearby Compact Groups of galaxies(UZC-CGs). Seventeen Seyferts are found, constituting ˜3% of theUZC-CG galaxy population. CGs hosting and non-hosting a Seyfert memberexhibit no significant differences, except that a relevant number of Sy2is found in unusual CGs, all presenting large velocity dispersion(σ>400 km s-1), many neighbours and a high number ofellipticals. We also find that the fraction of Seyferts in CGs is 3times as large as that among UZC-single-galaxies, and results from anexcess of Sy2s. CG-Seyferts are not more likely than other CG galaxiesto present major interaction patterns, nor to display a bar. Our resultsindirectly support the minor-merging fueling mechanism.

Photometric structure of polar-ring galaxies
The results of B, V, R surface photometry of three polar-ring galaxies(PRGs) - A 0017+2212, UGC 1198, UGC 4385 - are presented. The data wereacquired at the 6-m telescope of the Special Astrophysical Observatoryof the Russian Academy of Sciences. It was shown that all three galaxiesare peculiar late-type spirals in the state of ongoing interaction ormerging. We discuss available photometric properties of the PRGs withspiral hosts and consider the Tully-Fisher relation for different typesof PRGs. In agreement with Iodice et al. (\cite{Iodice03}), we haveshown that true PRGs demonstrate ˜1/3 larger maximum rotationvelocities than spiral galaxies of the same luminosity. Peculiar objectswith forming polar structures satisfy, on average, the Tully-Fisherrelation for disk galaxies but with large scatter.

Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features
We present ISOPHOT spectra of the regions 2.5-4.9 μm and 5.8-11.6μm for a sample of 45 disk galaxies from the US Infrared SpaceObservatory Key Project on Normal Galaxies. The galaxies were selectedto span the range in global properties of normal, star-forming diskgalaxies in the local universe. The spectra can be decomposed into threespectral components: (1) continuum emission from stellar photospheres,which dominates the near-infrared (NIR; 2.5-4.9 μm) spectral region;(2) a weak NIR excess continuum, which has a color temperature of~103 K, carries a luminosity of a few percent of the totalfar-infrared (FIR) dust luminosity LFIR and most likelyarises from the interstellar medium (ISM); and (3) the well-known broademission features at 6.2, 7.7, 8.6, and 11.3 μm, which are generallyattributed to aromatic carbon particles. These aromatic features inemission (AFEs) dominate the mid-infrared (MIR; 5.8-11.6 μm) part ofthe spectrum and resemble the so-called type A spectra observed in manynonstellar sources and the diffuse ISM in our own Galaxy. The fewnotable exceptions include NGC 4418, where a dust continuum replaces theAFEs in MIR, and NGC 1569, where the AFEs are weak and the strongestemission feature is [S IV] 10.51 μm. The relative strengths of theAFEs vary by 15%-25% among the galaxies. However, little correlation isseen between these variations and either IRAS 60 μm/100 μm fluxdensity ratio R(60/100) or the FIR/blue luminosity ratioLFIR/LB, two widely used indicators of the currentstar formation activity, suggesting that the observed variations are nota consequence of the radiation field differences among the galaxies. Wedemonstrate that the NIR excess continuum and AFE emission arecorrelated, suggesting that they are produced by similar mechanisms andsimilar (or the same) material. On the other hand, as the current starformation activity increases, the overall strengths of the AFEs and theNIR excess continuum drop significantly with respect to that of the FIRemission from large dust grains. In particular, the summed luminosity ofthe AFEs falls from ~0.2 LFIR for the most ``IR-quiescent''galaxies to ~0.1 LFIR for the most ``IR-active'' galaxies.This is likely a consequence of the preferential destruction in intenseradiation fields of the small carriers responsible for the NIR/AFEemission.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries, France, Germany, theNetherlands, and the United Kingdom) and with the participation of ISASand NASA.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Studies of the Second Byurakan Survey Galaxies. I. Mergers, Interacting Systems, and Close Pairs
This paper reports on a study of the morphological characteristics ofseveral samples of galaxies drawn from the 1401 objects which comprisethe Second Byurakan Survey (SBS). These samples have been chosen toprovide information for studies of the relation between galaxyinteractions and galaxy star formation activity. Our samples include 110SBS galaxies in 107 mergers, 58 SBS galaxies in 47 interacting systems,and 49 SBS galaxies in 30 close pairs (projected separationsΔD<=50 kpc and radial velocity differences ΔV<=600 kms -1). Data are also presented for eight SBS galaxies formingfour wider pairs (ΔD<=100 kpc and ΔV<=700 km s-1), and 15 SBS galaxies forming five triplets (ΔD<=100kpc and ΔV<=900 km s -1). Four, and possibly anotherthree SBS galaxies, may be satellites of larger galaxies. Finally, sixother SBS objects are possibly H II regions in their host galaxies.

Hot dust in normal star-forming galaxies: JHKL' photometry of the ISO Key Project sample
We present JHK and 3.8 mu m (L') photometry of 26 galaxies in theInfrared Space Observatory (ISO) Normal Galaxy Key Project (KP) sampleand of seven normal ellipticals with the aim of investigating the originof the 4 mu m emission. The majority of the KP galaxies, and all theellipticals, have K-L<~ 1.0, consistent with stellar photospheresplus moderate dust extinction. Ten of the 26 KP galaxies have K-L>~1.0, corresponding to a flat or rising 4 mu m continuum, consistent withsignificant emission from hot dust at 600-1000 K. K-L is anticorrelatedwith ISO flux ratio F6.75/F15, weakly correlatedwith line ratio [O I]/[C II], but not with [C II]/FIR or IRAS ratioF60/F100. Photodissociation-region models forthese galaxies show that the hot dust responsible for red K-L resides inregions of high pressure and intense far-ultraviolet radiation field.Taken together, these results suggest that star formation in normalstar-forming galaxies can assume two basic forms: an ``active'',relatively rare, mode characterized by hot dust, suppressed AromaticFeatures in Emission (AFEs), high pressure, and intense radiation field;and the more common ``passive'' mode that occurs under more quiescentphysical conditions, with AFEs, and without hot dust. The occurrence ofthese modes appears to only weakly depend on the star-formation rate perunit area. Passive star formation over large scales makes up the bulk ofstar-forming activity locally, while the ``active'' regime may dominateat high redshifts. Based on data obtained at TIRGO, Gornergrat,Switzerland.

Near-Infrared photometry in J, H and Kn bands for polar ring galaxies. II. Global properties
We discuss the properties of the host galaxy and ring lightdistributions in the optical and near infrared bands for a sample ofPolar Ring Galaxies (PRGs), presented in Paper I (Iodice et al.\cite{paperI}). The goal of this work is to test different formationscenarios for PRGs, proposed by different authors in the last decades,by comparing their predictions with these new data. The strategy istwofold: i) the integrated colors of the main components in thesesystems are compared with those of standard morphological galaxy types,to investigate whether differences in colors are caused by dustabsorption or difference in stellar populations. We then derived anestimate of the stellar population ages in PRGs, which can be used toset constrains on the dynamical modeling and the time evolution of thesesystems; ii) we analyse the structural parameters of the host galaxy inorder to understand whether this component is a standard early-typesystem as its morphology suggests, and the light distribution in thepolar ring to measure its radial extension. These observational resultsindicate that the global properties of PRGs are better explained bydissipative merging of disks with un-equal masses as proposed by Bekki(1998), rather than the accretion-or stripping-of gas by a pre-existingearly-type galaxy.

Compact groups in the UZC galaxy sample
Applying an automatic neighbour search algorithm to the 3D UZC galaxycatalogue (Falco et al. \cite{Falco}) we have identified 291 compactgroups (CGs) with radial velocity between 1000 and 10 000 kms-1. The sample is analysed to investigate whether Tripletsdisplay kinematical and morphological characteristics similar to higherorder CGs (Multiplets). It is found that Triplets constitute lowvelocity dispersion structures, have a gas-rich galaxy population andare typically retrieved in sparse environments. Conversely Multipletsshow higher velocity dispersion, include few gas-rich members and aregenerally embedded structures. Evidence hence emerges indicating thatTriplets and Multiplets, though sharing a common scale, correspond todifferent galaxy systems. Triplets are typically field structures whilstMultiplets are mainly subclumps (either temporarily projected orcollapsing) within larger structures. Simulations show that selectioneffects can only partially account for differences, but significantcontamination of Triplets by field galaxy interlopers could eventuallyinduce the observed dependences on multiplicity. Tables 1 and 2 are onlyavailable in electronic at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/35

Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium
The most important cooling lines of the neutral interstellar medium(ISM) lie in the far-infrared (FIR). We present measurements by theInfrared Space Observatory Long Wavelength Spectrometer of seven linesfrom neutral and ionized ISM of 60 normal, star-forming galaxies. Thegalaxy sample spans a range in properties such as morphology, FIR colors(indicating dust temperature), and FIR/blue ratios (indicating starformation activity and optical depth). In two-thirds of the galaxies inthis sample, the [C II] line flux is proportional to FIR dust continuum.The other one-third show a smooth decline inL[CII]/LFIR with increasing Fν(60μm)/Fν(100 μm) and LFIR/LB,spanning a range of a factor of more than 50. Two galaxies at the warmand active extreme of the range haveL[CII]/LFIR<2×10-4 (3 σupper limit). This is due to increased positive grain charge in thewarmer and more active galaxies, which leads to less efficient heatingby photoelectrons from dust grains. The ratio of the two principalphotodissociation region (PDR) cooling linesL[OI]/L[CII] shows a tight correlation withFν(60 μm)/Fν(100 μm), indicating thatboth gas and dust temperatures increase together. We derive atheoretical scaling between [N II] (122 μm) and [C II] from ionizedgas and use it to separate [C II] emission from neutral PDRs and ionizedgas. Comparison of PDR models of Kaufman et al. with observed ratios of(1) L[OI]/L[CII] and(L[CII]+L[OI])/LFIR and (2)L[OI]/LFIR and Fν(60μm)/Fν(100 μm) yields far-UV flux G0 andgas density n. The G0 and n values estimated from the twomethods agree to better than a factor of 2 and 1.5, respectively, inmore than half the sources. The derived G0 and n correlatewith each other, and G0 increases with n asG0~nα, where α~1.4 . We interpret thiscorrelation as arising from Strömgren sphere scalings if much ofthe line and continuum luminosity arises near star-forming regions. Thehigh values of PDR surface temperature (270-900 K) and pressure(6×104-1.5×107 K cm-3)derived also support the view that a significant part of grain and gasheating in the galaxies occurs very close to star-forming regions. Thedifferences in G0 and n from galaxy to galaxy may be due todifferences in the physical properties of the star-forming clouds.Galaxies with higher G0 and n have larger and/or denserstar-forming clouds.

The gas content of peculiar galaxies: Counterrotators and polar rings
This paper studies the global ISM content in a sample of 104 accretinggalaxies, including counterrotators and polar rings, which spans theentire Hubble sequence. The molecular, atomic and hot gas content ofaccretors is compared to a newly compiled sample of normal galaxies. Wepresent results of a small survey of the J=1-0 line of 12COwith the 15 m SEST telescope on a sample of 11 accretors (10counterrotators and 1 polar ring). The SEST sample is enlarged withpublished data from 48 galaxies, for which observational evidence ofcounterrotation in the gas and/or the stars has been found. Furthermore,the available data on a sample of 46 polar ring galaxies has beencompiled. In order to explore the existence of an evolutionary pathlinking the two families of accretors, the gas content ofcounterrotators and polar rings is compared. It was found that thenormalized content of cold gas (Mgas/LB) in polarrings is ~ 1 order of magnitude higher than the reference value derivedfor normal galaxies. The inferred gas masses are sufficient to stabilizepolar rings through self-gravity. In contrast, it was found that thecold gas content of counterrotators is close to normal for all galaxytypes. Although counterrotators and polar rings probably share a commonorigin, the gas masses estimated here confirm that light gas ringsaccreted by future counterrotators may have evolved faster than theself-gravitating structures of polar rings. In this scenario, thetransformation of atomic into molecular gas could be enhanced near thetransition region between the prograde and the retrograde disks,especially in late-type accretors characterized by a high content ofprimordial gas. This is tentatively confirmed in this work: the measuredH2/HI ratio seems larger in counterrotators than in normal orpolar ring galaxies for types later than S0s. Based on observationscollected at SEST telescope, European Southern Observatory, La Silla,Chile. Table 1 is only available in electronic form athttp://www.edpsciences.org

The Structure of Infrared-luminous Galaxies at 100 Microns
We have observed 22 galaxies at 100 μm with the Kuiper AirborneObservatory in order to determine the angular size of their FIR-emittingregions. This one-dimensional array data constitutes the highest spatialresolution ever achieved on luminous galaxies in the far-infrared. Mostof these galaxies are very luminous far-infrared sources, withLFIR>1011 Lsolar. We clearlyresolved six of these galaxies at 100 μm and have some evidence forextension in seven others. Those galaxies that we have resolved can havelittle of their 100 μm flux directly emitted by a pointlike activegalactic nucleus. Dust heated to ~40 K by recent bursts of nonnuclearstar formation provides the best explanation for their extreme FIRluminosity. In a few cases, heating of an extended region by a compactcentral source is also a plausible option.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Mid-Infrared Spectra of Normal Galaxies
The mid-infrared spectra (2.5-5 and 5.7-11.6 μm) obtained by ISOPHOTreveal the interstellar medium emission from galaxies powered by starformation to be strongly dominated by the aromatic features at 6.2, 7.7,8.6, and 11.3 μm. Additional emission appears in between thefeatures, and an underlying continuum is clearly evident at 3-5 μm.This continuum would contribute about a third of the luminosity in the3-13 μm range. The features together carry 5%-30% of the 40-120 μmfar-infrared (FIR) luminosity. The relative fluxes in individualfeatures depend very weakly on galaxy parameters such as thefar-infrared colors, direct evidence that the emitting particles are notin thermal equilibrium. The dip at 10 μm is unlikely to result fromsilicate absorption since its shape is invariant among galaxies. Thecontinuum component has a fν~ν+0.65 shapebetween 3 and 5 μm and carries 1%-4% of the FIR luminosity; itsextrapolation to longer wavelengths falls well below the spectrum in the6-12 μm range. This continuum component is almost certainly ofnonstellar origin and is probably due to fluctuating grains withoutaromatic features. The spectra reported here typify the integratedemission from the interstellar medium of the majority of star-forminggalaxies and could thus be used to obtain redshifts of highly extinctedgalaxies up to z=3 with SIRTF.

Optical Spectral Signatures of Dusty Starburst Galaxies
We analyze the optical spectral properties of the complete sample ofVery Luminous Infrared Galaxies presented by Wu et al., and we find ahigh fraction (~50%) of spectra showing both a strong Hδ line inabsorption and relatively modest [O II] emission [e(a) spectra]. Thee(a) signature has been proposed as an efficient method to identifydusty starburst galaxies, and we study the star formation activity andthe nature of these galaxies, as well as the effects of dust on theirobserved properties. We examine their emission-line characteristics, inparticular their [O II]/Hα ratio, and we find this to be greatlyaffected by reddening. A search for AGN spectral signatures reveals thatthe e(a) galaxies are typically H II/LINER galaxies. We compare the starformation rates derived from the FIR luminosities with the estimatesbased on the Hα line and find that the values obtained from theoptical emission lines are a factor of 10-70 (Hα) and 20-140 ([OII]) lower than the FIR estimates (50-300 Msolaryr-1). We then study the morphological properties of the e(a)galaxies, looking for a near companion or signs of a merger/interaction.In order to explore the evolution of the e(a) population, we present anoverview of the available observations of e(a) galaxies in differentenvironments both at low and high redshift. Finally, we discuss the roleof dust in determining the e(a) spectral properties and we propose ascenario of selective obscuration in which the extinction decreases withthe stellar age.

ISO Mid-Infrared Observations of Normal Star-Forming Galaxies: The Key Project Sample
We present mid-infrared maps and preliminary analysis for 61 galaxiesobserved with the ISOCAM instrument aboard the Infrared SpaceObservatory. Many of the general features of galaxies observed atoptical wavelengths-spiral arms, disks, rings, and bright knots ofemission-are also seen in the mid-infrared, except the prominent opticalbulges are absent at 6.75 and 15 μm. In addition, the maps are quitesimilar at 6.75 and 15 μm, except for a few cases where a centralstarburst leads to lower Iν(6.75μm)/Iν(15 μm) ratios in the inner region. We alsopresent infrared flux densities and mid-infrared sizes for thesegalaxies. The mid-infrared color Iν(6.75μm)/Iν(15 μm) shows a distinct trend with thefar-infrared color Iν(60 μm)/Iν(100μm). The quiescent galaxies in our sample [Iν(60μm)/Iν(100 μm)<~0.6] show Iν(6.75μm)/Iν(15 μm) near unity, whereas this ratio dropssignificantly for galaxies with higher global heating intensity levels.Azimuthally averaged surface brightness profiles indicate the extent towhich the mid-infrared flux is centrally concentrated, and provideinformation on the radial dependence of mid-infrared colors. Thegalaxies are mostly well resolved in these maps: almost half of themhave <10% of their flux in the central resolution element. Acomparison of optical and mid-infrared isophotal profiles indicates thatthe flux at 4400 Å near the optical outskirts of the galaxies isapproximately 8 (7) times that at 6.75 μm (15 μm), comparable toobservations of the diffuse quiescent regions of the Milky Way. Thispaper is based on observations with the Infrared Space Observatory(ISO). ISO is an ESA project with instruments funded by ESA memberstates (especially the PI countries: France, Germany, The Netherlands,and the United Kingdom) and with the participation of ISAS and NASA.

Accurate optical positions for 2978 objects from the Second Byurakan Survey (SBS) with the Digitized Sky Survey
Optical positions of 2978 objects listed in the Second Byurakan Survey(SBS) were obtained using the Digitized Sky Survey (DSS), and are givenwith an rms uncertainty ~ 1 arcsec in each coordinate. Tables 1 and 2are only available in electronic form at the CDS via anonymous ftp130.79.128.5 or via http://cdsweb.u-strasbg.fr/Abstract.html

A neutral hydrogen survey of polar ring galaxies. III. Nançay observations and comparison with published data
A total of 50 optically selected polar ring galaxies, polar ring galaxycandidates and related objects were observed in the 21-cm H i line withthe Nançay decimetric radio telescope and 31 were detected. Theobjects, selected by their optical morphology, are all north ofdeclination -39o, and generally relatively nearby (V< 8000km s-1) and/or bright (mB< 15.5). The H i linedata are presented for all 74 galaxies observed for the survey with theEffelsberg, Green Bank or Nanç radio telescopes, as well as allother published H i line parameters of these objects. Three objects wereobserved and detected by us at Parkes. A total of 59 objects weredetected. For each object a brief description is given based on aliterature search.

The ISOPHOT 170 μ m serendipity survey. I. Compact sources with galaxy associations
The first set of compact sources observed in the ISOPHOT 170 μmSerendipity Survey is presented. From the slew data with low(I100 μm <= 15 MJy/sr) cirrus background, 115well-observed sources with a high signal-to-noise ratio in all detectorpixels having a galaxy association were extracted. Of the galaxies withknown optical morphologies, the vast majority are classified as spirals,barred spirals, or irregulars. The 170 μm fluxes measured from theSerendipity slews have been put on an absolute flux level by usingcalibration sources observed additionally with the photometric mappingmode of ISOPHOT. For all but a few galaxies, the 170 μm fluxes aredetermined for the first time, which represents a significant increasein the number of galaxies with measured Far-Infrared (FIR) fluxes beyondthe IRAS 100 μm limit. The 170 μm fluxes cover the range 2 <~F170 μm la 100 Jy. Formulae for the integrated FIR fluxesF40-220μm and the total infrared fluxesF1-1000μm incorporating the new 170 μm fluxes areprovided. The large fraction of sources with a high F170μm / F100 μm flux ratio indicates that a cold(TDust la 20 K) dust component is present in many galaxies.The detection of such a cold dust component is crucial for thedetermination of the total dust mass in galaxies, and, in cases with alarge F170 μm / F100 μm flux ratio,increases the dust mass by a significant factor. The typical mass of thecoldest dust component is MDust = 107.5 +/- 0.5Msun , a factor 2-10 larger than that derived from IRASfluxes alone. As a consequence, the majority of the derived gas-to-dustratios are much closer to the canonical value of ~ 160 for the MilkyWay. By relaxing the selection criteria, it is expected that theSerendipity Survey will eventually lead to a catalog of 170 μm fluxesfor ~ 1000 galaxies. Based on observations with ISO, an ESA project withinstruments funded by ESA Member States (especially the PI countries:France, Germany, the Netherlands and the United Kingdom) and with theparticipation of ISAS and NASA. Members of the Consortium on the ISOPHOTSerendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca,AIP Potsdam, IPAC Pasadena, Imperial College London.

Galaxy collisions.
Theories of how galaxies, the fundamental constituents of large-scalestructure, form and evolve have undergone a dramatic paradigm shift inthe last few decades. Earlier views were of rapid, early collapse andformation of basic structures, followed by slow evolution of the stellarpopulations and steady buildup of the chemical elements. Currenttheories emphasize hierarchical buildup via recurrent collisions andmergers, separated by long periods of relaxation and secularrestructuring. Thus, collisions between galaxies are now seen as aprimary process in their evolution. This article begins with a briefhistory; we then tour parts of the vast array of collisional forms thathave been discovered to date. Many examples are provided to illustratehow detailed numerical models and multiwaveband observations haveallowed the general chronological sequence of collisional morphologiesto be deciphered, and how these forms are produced by the processes oftidal kinematics, hypersonic gas dynamics, collective dynamical frictionand violent relaxation. Galaxy collisions may trigger the formation of alarge fraction of all the stars ever formed, and play a key role infueling active galactic nuclei. Current understanding of the processesinvolved is reviewed. The last decade has seen exciting new discoveriesabout how collisions are orchestrated by their environment, howcollisional processes depend on environment, and how these environmentsdepend on redshift or cosmological time.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Змај
Ректацензија:16h58m31.70s
Deклинација:+58°56'13.0"
Привидна димензија:1.23′ × 1.122′

Каталог и designations:
Proper имена   (Edit)
NGC 2000.0NGC 6286
HYPERLEDA-IPGC 59352

→ Захтевај још каталога од VizieR