Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

NGC 23


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

An Integrated Spectrophotometric Survey of Nearby Star-forming Galaxies
We present integrated optical spectrophotometry for a sample of 417nearby galaxies. Our observations consist of spatially integrated,S/N=10-100 spectroscopy between 3600 and 6900 Å at ~8 Å FWHMresolution. In addition, we present nuclear (2.5"×2.5")spectroscopy for 153 of these objects. Our sample targets a diverserange of galaxy types, including starbursts, peculiar galaxies,interacting/merging systems, dusty, infrared-luminous galaxies, and asignificant number of normal galaxies. We use population synthesis tomodel and subtract the stellar continuum underlying the nebular emissionlines. This technique results in emission-line measurements reliablycorrected for stellar absorption. Here we present the integrated andnuclear spectra, the nebular emission-line fluxes and equivalent widths,and a comprehensive compilation of ancillary data available in theliterature for our sample. In a series of subsequent papers we use thesedata to study optical star formation rate indicators, nebular abundancediagnostics, the luminosity-metallicity relation, the dust properties ofnormal and starburst galaxies, and the star formation histories ofinfrared-luminous galaxies.

Active and Star-forming Galaxies and Their Supernovae
To investigate the extent to which nuclear starbursts or other nuclearactivity may be connected with enhanced star formation activity in thehost galaxy, we perform a statistical investigation of supernovae (SNe)discovered in host galaxies from four samples: the Markarian galaxiessample, the Second Byurakan Survey (SBS) sample, the north Galactic pole(NGP) sample of active or star-forming galaxies, and the NGP sample ofnormal galaxies. Forty-seven SNe in 41 Mrk galaxies, 10 SNe in six SBSgalaxies, 29 SNe in 26 NGP active or star-forming galaxies, and 29 SNein 26 NGP normal galaxies have been studied. We find that the rate ofSNe, particularly core-collapse (Types Ib/c and II) SNe, is higher inactive or star-forming galaxies in comparison with normal galaxies.Active or star-forming host galaxies of SNe are generally of latermorphological type and have lower luminosity and smaller linear sizethan normal host galaxies of SNe. The radial distribution of SNe inactive and star-forming galaxies shows a higher concentration toward thecenter of the active host galaxy than is the case for normal hostgalaxies, and this effect is more pronounced for core-collapse SNe.Ib/c-type SNe have been discovered only in active and star-forminggalaxies of our samples. About 78% of these SNe are associated with H IIregions or are located very close to the nuclear regions of these activegalaxies, which are in turn hosting AGNs or starburst nuclei. Besidesthese new results, our study also supports the conclusions of severalother earlier papers. We find that Type Ia SNe occur in all galaxytypes, whereas core-collapse SNe of Types Ib/c and II are found only inspiral and irregular galaxies. The radial distribution of Type Ib SNe intheir host galaxies is more centrally concentrated than that of Type IIand Ia SNe. The radial distances of Types Ib/c and II SNe, from thenuclei of their host galaxies, is larger for barred spiral hosts.Core-collapse SNe are concentrated in spiral arms and are often close toor in the H II regions, whereas Type Ia SNe show only a looseassociation with spiral arms and no clear association with H II regions.

The Westerbork HI survey of spiral and irregular galaxies. III. HI observations of early-type disk galaxies
We present Hi observations of 68 early-type disk galaxies from the WHISPsurvey. They have morphological types between S0 and Sab and absoluteB-band magnitudes between -14 and -22. These galaxies form the massive,high surface-brightness extreme of the disk galaxy population, few ofwhich have been imaged in Hi before. The Hi properties of the galaxiesin our sample span a large range; the average values of MHI/LB and DH I/D25 are comparableto the ones found in later-type spirals, but the dispersions around themean are larger. No significant differences are found between the S0/S0aand the Sa/Sab galaxies. Our early-type disk galaxies follow the same Himass-diameter relation as later-type spiral galaxies, but theireffective Hi surface densities are slightly lower than those found inlater-type systems. In some galaxies, distinct rings of Hi emissioncoincide with regions of enhanced star formation, even though theaverage gas densities are far below the threshold of star formationderived by Kennicutt (1989, ApJ, 344, 685). Apparently, additionalmechanisms, as yet unknown, regulate star formation at low surfacedensities. Many of the galaxies in our sample have lopsided gasmorphologies; in most cases this can be linked to recent or ongoinginteractions or merger events. Asymmetries are rare in quiescentgalaxies. Kinematic lopsidedness is rare, both in interacting andisolated systems. In the appendix, we present an atlas of the Hiobservations: for all galaxies we show Hi surface density maps, globalprofiles, velocity fields and radial surface density profiles.

The orientation parameters and rotation curves of 15 spiral galaxies
We analyzed ionized gas motion and disk orientation parameters for 15spiral galaxies. Their velocity fields were measured with the Hαemission line by using the Fabry-Perot interferometer at the 6 mtelescope of SAO RAS. Special attention is paid to the problem ofestimating the position angle of the major axis (PA0) and theinclination (i) of a disk, which strongly affect the derived circularrotation velocity. We discuss and compare different methods of obtainingthese parameters from kinematic and photometric observations, takinginto account the presence of regular velocity (brightness) perturbationscaused by spiral density waves. It is shown that the commonly usedmethod of tilted rings may lead to systematic errors in the estimationof orientation parameters (and hence of circular velocity) being appliedto galaxies with an ordered spiral structure. Instead we recommend usingan assumption of constancy of i and PA0 along a radius, toestimate these parameters. For each galaxy of our sample we presentmonochromatic Hα- and continuum maps, velocity fields of ionizedgas, and the mean rotation curves in the frame of a model of purecircular gas motion. Significant deviations from circular motion withamplitudes of several tens of km s-1 (or higher) are found inalmost all galaxies. The character and possible nature of thenon-circular motion are briefly discussed.Based on observations collected with the 6 m telescope of the SpecialAstrophysical Observatory (SAO) of the Russian Academy of Sciences(RAS), operated under the financial support of the Science Department ofRussia (registration number 01-43).Section 4 and Figs. 6-19 are only avalaible in electronic form athttp://www.edpsciences.org

On the alignment between binary spiral galaxies
We show some significance against the null hypothesis of randominteractions of binary spiral galaxies, and in favour of the alternativethat more interactions than expected occur for axes either nearlyparallel (spins being parallel or anti-parallel) or nearly orthogonal.We discuss this in the context of similar prior studies, using adifferent statistical focus in such a way that we are able toincorporate additional data.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

A Study of the Distribution of Star-forming Regions in Luminous Infrared Galaxies by Means of Hα Imaging Observations
We performed Hα imaging observations of 22 luminous infraredgalaxies to investigate how the distribution of star-forming regions inthese galaxies is related to galaxy interactions. Based on correlationdiagrams between Hα flux and continuum emission for individualgalaxies, a sequence for the distribution of star-forming regions wasfound: very compact (~100 pc) nuclear starbursts with almost nostar-forming activity in the outer regions (type 1), dominant nuclearstarbursts <~1 kpc in size with a negligible contribution from theouter regions (type 2), nuclear starbursts >~1 kpc in size with asignificant contribution from the outer regions (type 3), and extendedstarbursts with relatively faint nuclei (type 4). These classes ofstar-forming regions were found to be strongly related to globalstar-forming properties, such as star formation efficiency, far-infraredcolor, and dust extinction. There was a clear tendency for the objectswith more compact distributions of star-forming regions to show a higherstar formation efficiency and hotter far-infrared color. An appreciablefraction of the sample objects were dominated by extended starbursts(type 4), which is unexpected in the standard scenario ofinteraction-induced starburst galaxies. We also found that thedistribution of star-forming regions was weakly but clearly related togalaxy morphology: severely disturbed objects had a more concentrateddistribution of star-forming regions. This suggests that the propertiesof galaxy interactions, such as dynamical phase and orbital parameters,play a more important role than the internal properties of progenitorgalaxies, such as dynamical structure or gas mass fraction. We alsodiscuss the evolution of the distribution of star-forming regions ininteracting galaxies.

Dust masses and star formation in bright IRAS galaxies. Application of a physical model for the interpretation of FIR observations
We address the problem of modeling the far-infrared (FIR) spectrum andderiving the star-formation rate (SFR) and the dust mass of spiralgalaxies. We use the realistic physical model of Popescu et al.(\cite{popescu}) to describe the overall ultra-violet (UV), optical andFIR spectral energy distribution (SED) of a spiral galaxy. The modeltakes into account the 3-dimensional old and young stellar distributionsin the bulge and the disk of a galaxy, together with the dust geometry.The geometrical characteristics of the galaxy and the intrinsic opticaland near-infrared spectra are determined by the galaxy's observed K-bandphotometry. The UV part of the spectrum is assumed to be proportional tothe SFR through the use of population synthesis models. By solving theradiative transfer equation, we are able to determine the absorbedenergy, the dust temperature and the resulting FIR spectrum. The modelhas only three free parameters: SFR, dust mass, and the fraction of theUV radiation which is absorbed locally by dense dust in the HII regions.Using this model, we are able to fit well the FIR spectra of 62 brightIRAS galaxies from the ``SCUBA Local Universe Galaxy Survey" of Dunne etal. (\cite{dunne1}). As a result, we are able to determine, amongothers, their SFR and dust mass. We find that, on average, the SFR (inabsolute units), the star-formation efficiency, the SFR surface densityand the ratio of FIR luminosity over the total intrinsic luminosity, arelarger than the respective values of typical spiral galaxies of the samemorphological type. We also find that the mean gas-to-dust mass ratio isclose to the Galactic value, while the average central face-on opticaldepth of these galaxies in the V band is 2.3. Finally, we find a strongcorrelation between SFR or dust mass and observed FIR quantities liketotal FIR luminosity or FIR luminosity at 100 and 850 μm. Thesecorrelations yield well-defined relations, which can be used todetermine a spiral galaxy's SFR and dust-mass content from FIRobservations.

Starbursts in barred spiral galaxies. VI. HI observations and the K-band Tully-Fisher relation
This paper reports a study of the effect of a bar on the neutralhydrogen (HI) content of starburst and Seyfert galaxies. We also makecomparisons with a sample of ``normal'' galaxies and investigate howwell starburst and Seyfert galaxies follow the fundamental scalingTully-Fisher (TF) relation defined for normal galaxies. 111 Markarian(Mrk) IRAS galaxies were observed with the Nançay radiotelescope,and HI data were obtained for 80 galaxies, of which 64 are newdetections. We determined the (20 and 50%) linewidths, the maximumvelocity of rotation and total HI flux for each galaxy. Thesemeasurements are complemented by data from the literature to form asample of Mrk IRAS (74% starburst, 23% Seyfert and 3% unknown) galaxiescontaining 105 unbarred and 113 barred ones. Barred galaxies have lowertotal and bias-corrected HI masses than unbarred galaxies, and this istrue for both Mrk IRAS and normal galaxies. This robust result suggeststhat bars funnel the HI gas toward the center of the galaxy where itbecomes molecular before forming new stars. The Mrk IRAS galaxies havehigher bias-corrected HI masses than normal galaxies. They also showsignificant departures from the TF relation, both in the B and K bands.The most deviant points from the TF relation tend to have a strongfar-infrared luminosity and a low oxygen abundance. These resultssuggest that a fraction of our Mrk IRAS galaxies are still in theprocess of formation, and that their neutral HI gas, partly of externalorigin, has not yet reached a stationary state.Based on observations obtained at the large radiotelescope ofObservatoire de Nançay, operated by Observatoire de Paris.Tables 5 and 6 are only (and Table 4 also) available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/515

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

The luminous and dark matter content of disk galaxies
We have compiled a sample of disk galaxies with available photometry inthe B and K bands, velocity line-widths and HI integral fluxes. Severalparameters that trace the luminous, baryonic and dark matter contentswere inferred. We investigated how these parameters vary with differentgalaxy properties, and compared the results with predictions of galaxyevolutionary models in the context of the Λ Cold Dark Matter(ΛCDM) cosmogony. The ratio of disk-to-total maximum circularvelocity, (Vd,m/Vt,m), depends mainly on thecentral disk surface density Σd,0 (or surfacebrightness, SB), increasing roughly asΣd,00.15. While a fraction of high SBgalaxies have a (Vd,m/Vt,m) ratio corresponding tothe maximum disk solution, the low SB are completely dark matterdominated. The trend is similar for the models, although they haveslightly smaller (Vd,m/Vt,m) ratios thanobservations, in particular at the highest SBs and when small baryonfractions are used. The scatter in the(Vd,m/Vt,m)- Σd,0 plot is large.An analysis of residuals shows that (Vd,m/Vt,m)tends to decrease as the galaxy is redder, more luminous (massive), andof earlier type. The models allow us to explain the physics of theseresults, which imply a connexion between halo structure and luminousproperties. The dynamical-to-baryon mass and dynamical mass-to-light (Band K) ratios at a given radius were also estimated. All these ratios,for observations and models, decrease with Σd,0; (orSB) and do not correlate significantly with the galaxy scale, contraryto what has been reported in previous works, based on the analysis ofrotation curve shapes. We discuss this difference and state theimportance of solving the controversy of whether the dark and luminouscontents in disk galaxies depend on SB or luminosity. The broadagreement between the models and observations presented here regardingthe trends of the dynamical-to-baryon matter and mass-to-light ratioswith several galaxy properties favors the ΛCDM scenario. However,the excess of dark matter inside the optical region of disk galaxiesremains the main difficulty.Appendices A and B are only available in electronic form athttp://www.edpsciences.org. Table 1 is only available at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/633

The WSRT wide-field H I survey. I. The background galaxy sample
We have used the Westerbork array to carry out an unbiased wide-fieldsurvey for H I emission features, achieving an RMS sensitivity of about18 mJy/Beam at a velocity resolution of 17 km s-1 over 1800deg2 and between -1000 < VHel <+6500 kms-1. The primary data consists of auto-correlation spectrawith an effective angular resolution of 49' FWHM, althoughcross-correlation data were also acquired. The survey region is centeredapproximately on the position of Messier 31 and is Nyquist-sampled over60x 30o in RA x Dec. More than 100 distinct features aredetected at high significance in each of the two velocity regimes(negative and positive LGSR velocities). In this paper we present theresults for our H I detections of external galaxies at positive LGSRvelocity. We detect 155 external galaxies in excess of 8sigma inintegrated H I flux density. Plausible optical associations are foundwithin a 30' search radius for all but one of our H I detections in DSSimages, although several are not previously cataloged or do not havepublished red-shift determinations. Our detection without a DSSassociation is at low galactic latitude. Twenty-three of our objects aredetected in H I for the first time. We classify almost half of ourdetections as ``confused'', since one or more companions is catalogedwithin a radius of 30' and a velocity interval of 400 km s-1.We identify a handful of instances of significant positional offsetsexceeding 10 kpc of unconfused optical galaxies with the associated H Icentroid, possibly indicative of severe tidal distortions or uncatalogedgas-rich companions. A possible trend is found for an excess of detectedH I flux in unconfused galaxies within our large survey beam relative tothat detected previously in smaller telescope beams, both as function ofincreasing distance and increasing gas mass. This may be an indicationfor a diffuse gaseous component on 100 kpc scales in the environment ofmassive galaxies or a population of uncataloged low mass companions. Weuse our galaxy sample to estimate the H I mass function from our surveyvolume. Good agreement is found with the HIPASS BGC results, but onlyafter explicit correction for galaxy density variations with distance.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/829 and Fig. 3 is onlyavailable in electronic form at http://www.edpsciences.org

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

The cold gas properties of Markarian galaxies
A sample of 61 Markarian galaxies detected in the CO line was compiled.Using available HI, element H2, optical and radio continuumdata, the analysis of the gas kinematics and the star formationproperties for this sample of galaxies was performed. The mainconclusion can be summarized as follows: (1) The HI and CO line widthsare well correlated. Interaction between galaxies has no influence onthe CO line broadening. A rapidly rotating nuclear disk in the galaxymight lead to the CO line broadening with less influence on the HI line.(2) The atomic and molecular gas surface densities are well correlatedwith the blue, FIR and radio continuum surface brightness; however, thecorrelation for molecular component is stronger.\ (3) In general, thegalaxies with UV-excess (Markarian galaxies) do not differ in their starformation properties from the non-UV galaxies.

Far-Infrared Census of Starburst-Seyfert Connection
Far-infrared flux densities are newly extracted from the IRAS databasefor the Revised Shapley-Ames and CfA complete samples of Seyfertgalaxies. These data are used to classify the Seyfert galaxies intothose where the far-infrared continuum emission is dominated by theactive galactic nucleus (AGN), circumnuclear starburst, or host galaxy.While AGN-dominant objects consist of comparable numbers of Seyfert 1and 2 galaxies, starburst- and host-dominant objects consistpreferentially of Seyfert 2 galaxies. Thus, in addition to the dustytorus, the circumnuclear starburst region and host galaxy are importantin hiding the broad-line region. Morphologically, starburst-dominantSeyfert galaxies are of later types and more strongly interacting thanAGN-dominant Seyfert galaxies. In a later type galaxy, the AGN centralengine has a lower Eddington luminosity, and the gaseous content ishigher. The gas is efficiently supplied to the starburst via agalaxy-galaxy interaction. Morphologies of host-dominant Seyfertgalaxies are of various types. Since starbursts in Seyfert galaxies areolder than those in classical starburst galaxies, we propose anevolution from starburst to starburst-dominant Seyfert to host-dominantSeyfert for a late-type galaxy. An evolution from AGN-dominant Seyfertto host-dominant Seyfert is proposed for an early-type galaxy. Thesesequences have durations of a few times 108 yr and occurrepeatedly within a galaxy during its evolution from a late type to anearly type.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Ice features in the mid-IR spectra of galactic nuclei
Mid infrared spectra provide a powerful probe of the conditions in dustygalactic nuclei. They variously contain emission features associatedwith star forming regions and absorptions by circumnuclear silicate dustplus ices in cold molecular cloud material. Here we report the detectionof 6-8 mu m water ice absorption in 18 galaxies observed by ISO. Whilethe mid-IR spectra of some of these galaxies show a strong resemblanceto the heavily absorbed spectrum of NGC 4418, other galaxies in thissample also show weak to strong PAH emission. The 18 ice galaxies arepart of a sample of 103 galaxies with good S/N mid-IR ISO spectra. Basedon our sample we find that ice is present in most of the ULIRGs, whereasit is weak or absent in the large majority of Seyferts and starburstgalaxies. This result is consistent with the presence of largerquantities of molecular material in ULIRGs as opposed to other galaxytypes. Like NGC 4418, several of our ice galaxy spectra show a maximumnear 8 mu m that is not or only partly due to PAH emission. While thisaffects only a small part of the galaxy population studied by ISO, itstresses the need for high S/N data and refined diagnostic methods, toproperly discriminate spectra dominated by PAH emission and spectradominated by heavy obscuration. The spectral variation from PAH emissionto absorbed continuum emission near 8 mu m shows strong similaritieswith Galactic star forming clouds. This leads us to believe that ourclassification of ice galaxy spectra might reflect an evolutionarysequence from strongly obscured beginnings of star formation (and AGNactivity) to a less enshrouded stage of advanced star formation (and AGNactivity), as the PAHs get stronger and the broad 8 mu m featureweakens. Based on observations with ISO, an ESA project with instrumentsfunded by ESA Member States (especially the PI countries: France,Germany, The Netherlands and the United Kingdom) and with theparticipation of ISAS and NASA.

Supernovae in isolated galaxies, in pairs and in groups of galaxies
In order to investigate the influence of environment on supernova (SN)production, we have performed a statistical investigation of the SNediscovered in isolated galaxies, in pairs and in groups of galaxies. 22SNe in 18 isolated galaxies, 48 SNe in 40 galaxy members of 37 pairs and211 SNe in 170 galaxy members of 116 groups have been selected andstudied. We found that the radial distributions of core-collapse SNe ingalaxies located in different environments are similar, and consistentwith those reported by Bartunov, Makarova & Tsvetkov. SNe discoveredin pairs do not favour a particular direction with respect to thecompanion galaxy. Also, the azimuthal distributions inside the hostmembers of galaxy groups are consistent with being isotropics. The factthat SNe are more frequent in the brighter components of the pairs andgroups is expected from the dependence of the SN rates on the galaxyluminosity. There is an indication that the SN rate is higher in galaxypairs compared with that in groups. This can be related to the enhancedstar formation rate in strongly interacting systems. It is concludedthat, with the possible exception of strongly interacting systems, theparent galaxy environment has no direct influence on SN production.

Disc-like objects in hierarchical hydrodynamical simulations: comparison with observations
We present results from a careful and detailed analysis of thestructural and dynamical properties of a sample of 29 disc-like objectsidentified at z=0 in three AP3M-SPH fully consistent cosmologicalsimulations. These simulations are realizations of a CDM hierarchicalmodel, in which an inefficient Schmidt-law-like algorithm to model thestellar formation process has been implemented. We focus on propertiesthat can be constrained with available data from observations of spiralgalaxies, namely the bulge and disc structural parameters and therotation curves. Comparison with data from Broeils, de Jong and Courteaugives satisfactory agreement, in contrast with previous findings usingother codes. This suggests that the stellar formation implementation wehave used has succeeded in forming compact bulges that stabilizedisc-like structures in the violent phases of their assembly, while inthe quiescent phases the gas has cooled and collapsed in accord with theFall & Efstathiou standard model of disc formation.

An Investigation into the Prominence of Spiral Galaxy Bulges
From a diameter-limited sample of 86 low-inclination (face-on) spiralgalaxies, the bulge-to-disk size and luminosity ratios and otherquantitative measurements for the prominence of the bulge are derived.The bulge and disk parameters have been estimated using aseeing-convolved Sérsic r1/n bulge and aseeing-convolved exponential disk that were fitted to the optical (B, R,and I) and near-infrared (K) galaxy light profiles. In general,early-type spiral galaxy bulges have Sérsic values of n>1, andlate-type spiral galaxy bulges have values of n<1. In the B band,only eight galaxies have a bulge shape parameter n consistent with theexponential value 1, and only five galaxies do in the K band. Use of theexponential bulge model is shown to restrict the range ofre/h and B/D values by more than a factor of 2. Applicationof the r1/n bulge models, unlike exponential bulge models,results in a larger mean re/h ratio for the early-type spiralgalaxies than for the late-type spiral galaxies, although this result isshown not to be statistically significant. The mean B/D luminosity ratiois, however, significantly larger (>3 σ) for the early-typespirals than for the late-type spirals. Two new parameters areintroduced to measure the prominence of the bulge. The first is thedifference between the central surface brightness of the galaxy and thesurface brightness level at which the bulge and disk contribute equally.The other test uses the radius at which the contribution from the diskand bulge light are equal, normalized for the effect of intrinsicallydifferent galaxy sizes. Both of these parameters reveal that theearly-type spiral galaxies ``appear'' to have significantly (more than 2σ in all passbands) bigger and brighter bulges than late-typespiral galaxies. This apparent contradiction with the re/hvalues can be explained with an iceberg-like scenario, in which thebulges in late-type spiral galaxies are relatively submerged in theirdisk. This can be achieved by varying the relative stellar density whilemaintaining the same effective bulge-to-disk ratio. The B/D luminosityratio and the concentration index C31, in agreement with paststudies, are positively correlated and decrease as one moves along thespiral Hubble sequence toward later spiral galaxy types, although forgalaxies with large extended bulges the concentration index no longertraces the B/D luminosity ratio in a one-to-one fashion. A strong(Spearman's rank-order correlation coefficient, rs=0.80) andhighly significant positive correlation exists between the shape, n, ofthe bulge light profile and the bulge-to-disk luminosity ratio. Theabsolute bulge magnitude-logn diagram is used as a diagnostic tool forcomparative studies with dwarf elliptical and ordinary ellipticalgalaxies. At least in the B band these objects occupy distinctlydifferent regions of this parameter space. While the dwarf ellipticalgalaxies appear to be the faint extension to the brighter ellipticalgalaxies, the bulges of spiral galaxies do not; for a given luminositythey have a noticeably smaller shape parameter and hence a more dramaticdecline of stellar density at large radii.

Infrared to millimetre photometry of ultra-luminous IR galaxies: New evidence favouring a 3-stage dust model
Infrared to millimetre spectral energy distributions (SEDs) have beenobtained for 41 bright ultra-luminous infrared galaxies (ULIRGs). Theobservations were carried out with ISOPHOT between 10 and 200 mu m andsupplemented for 16 sources with JCMT/SCUBA at 450 and 850 mu m and withSEST at 1.3 mm. In addition, seven sources were observed at 1.2 and 2.2mu m with the 2.2 m telescope on Calar Alto. These new SEDs representthe most complete set of infrared photometric templates obtained so faron ULIRGs in the local universe. The SEDs peak at 60-100 mu m and showoften a quite shallow Rayleigh-Jeans tail. Fits with one single modifiedblackbody yield a high FIR opacity and small dust emissivity exponentbeta < 2. However, this concept leads to conflicts with several otherobservational constraints, like the low PAH extinction or the extendedfilamentary optical morphology. A more consistent picture is obtainedusing several dust components with beta = 2, low to moderate FIR opacityand cool (50 K > T > 30 K) to cold (30 K > T > 10 K)temperatures. This provides evidence for two dust stages, the coolstarburst dominated one and the cold cirrus-like one. The third stagewith several hundred Kelvin warm dust is identified in the AGN dominatedULIRGs, showing up as a NIR-MIR power-law flux increase. While AGNs andSBs appear indistinguishable at FIR and submm wavelengths, they differin the NIR-MIR. This suggests that the cool FIR emitting dust is notrelated to the AGN, and that the AGN only powers the warm and hot dust.In comparison with optical and MIR spectroscopy, a criterion based onthe SED shapes and the NIR colours is established to reveal AGNs amongULIRGs. Also the possibility of recognising evolutionary trends amongthe ULIRGs via the relative amounts of cold, cool and warm dustcomponents is investigated. Based on observations with the InfraredSpace Observatory ISO, the James Clerk Maxwell Telescope JCMT, theSwedish ESO Submillimetre Telescope SEST and at the Calar AltoObservatory. ISO is an ESA project with instruments funded by ESA MemberStates (especially the PI countries France, Germany, The Netherlands andthe UK) and with the participation of ISAS and NASA. Appendices A and Bare only available in electronic form at http://www.edpsciences.com

The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions
This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Arizona-New Mexico Spectroscopic Survey of Galaxies. III. On Galaxy Populations
We examine the population statistics for two samples of galaxies in thedirection of the Perseus supercluster. One sample, with N=258 galaxieshaving MB<=-19.52+5log(h) and vh<=8000 kms-1, is complete for those galaxies within the boundaries ofour survey region that have apparent magnitudes mp<=15.0in the Zwicky catalog. A more restrictive sample with N=177 galaxieshaving MB<=-20.00+5log(h) (with the same redshift range)is complete in both luminosity and volume. We derive the statistics forthe relative incidence of galaxies in the following spectroscopicclasses: (1) absorption line only, (2) collisionally-excited emissionlines only, (3) nuclear H II region, (4) starburst, (5) LINER, and (6)Seyfert 1.8-2.

The Arizona-New Mexico Spectroscopic Survey of Galaxies. I. Data for the Western End of the Perseus Supercluster
We present new optical spectroscopic data for 347 galaxies in the regionof the Perseus supercluster. The new data were obtained using theSteward Observatory 2.3 m telescope and cover the whole optical window.Included are redshifts (for 345 objects), absorption-line equivalentwidths, a continuum index measuring the 4000 Å break, andemission-line flux ratios. After 11 objects are rejected for being toofaint and redshifts for 26 objects are added from the literature, wearrive at a complete sample of 361 galaxies. The distribution ofredshifts for the whole sample is examined, and we show the relationshipof the continuum index to morphology.

Starbursts in barred spiral galaxies. IV. On young bars and the formation of abundance gradients
The oxygen (O/H) and N/O abundance ratios along the bar of 16 barredspiral starburst galaxies are determined using long-slit spectroscopy.The abundance gradients and the spatial distribution of the ionized gasalong the bar are used to understand the role of bars in starburstgalaxies. The oxygen abundance gradients are steeper than in normalbarred galaxies, with a mean of -0.15 dex/kpc, while the intersects arelow. This excludes the possibility that starburst galaxies in thissample are chemically evolved galaxies rejuvenated by the effect of abar. The nitrogen-to-oxygen abundance gradients are flatter than theoxygen ones with a mean of -0.05 dex/kpc. But N/O intersects are high,which rules out the possibility that a large quantity of gas wasrecently funneled by a bar toward the center of a young galaxy. There isno correlation between the abundance gradients and the bar properties,which suggests that bars did not influence the chemical evolution ofthese galaxies. Therefore, bars cannot be at the origin of the bursts inthe nuclei of our sample galaxies. The oxygen and N/O abundancegradients are generally stronger in the bar than in the disk and arelinked together by a linear relation consistent with a primary +secondary origin for the production of nitrogen. This can be fullyexplained in terms of star formation history in these galaxies. Thegradients build up from the inside out, becoming stronger as the oxygenand N/O abundances increase in the bulge while staying low in the disk.This behavior is consistent with a simple Schmidt law relating thedensity of star formation to that of gas. In many of the samplegalaxies, star formation occurs at one or both ends of the bar. The lowlevel of chemical enrichment in these regions suggests that theyrecently experienced bar-triggered star formation: this is the onlyvisible effect of bars. Our analysis shows that bars probably appearedvery recently (a few 107 years) in the starburst galaxies,which are relatively ``young'' galaxies still in the process offormation. Based on observations obtained at the 193cm telescope ofObservatoire de Haute--Provence, operated by INSU (CNRS)

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

Galaxy Structural Parameters: Star Formation Rate and Evolution with Redshift
The evolution of the structure of galaxies as a function of redshift isinvestigated using two parameters: the metric radius of the galaxy(R_eta) and the power at high spatial frequencies in the disk of thegalaxy (chi). A direct comparison is made between nearby (z~0) anddistant (0.2<~z<~1) galaxies by following a fixed range in restframe wavelengths. The data of the nearby galaxies comprise 136broadband images at ~4500 Å observed with the 0.9 m telescope atKitt Peak National Observatory (23 galaxies) and selected from thecatalog of digital images of Frei et al. (113 galaxies). Thehigh-redshift sample comprises 94 galaxies selected from the Hubble DeepField (HDF) observations with the Hubble Space Telescope using the WideField Planetary Camera 2 in four broad bands that range between ~3000and ~9000 Å (Williams et al.). The radius is measured from theintensity profile of the galaxy using the formulation of Petrosian, andit is argued to be a metric radius that should not depend very stronglyon the angular resolution and limiting surface brightness level of theimaging data. It is found that the metric radii of nearby and distantgalaxies are comparable to each other. The median value of the radius ofthe local sample is ~5+/-1 kpc, and the median radius ofthe HDF sample is ~6+/-2 kpc for q_0=0.5, H_0=65 km s^-1Mpc^-1 however, for q_0=0.1, ~7 kpc and for q_0=1,~5 kpc. In the HDF, galaxies with redshifts larger thanz>0.6 have flatter R_eta distributions than galaxies with redshiftssmaller than z<=0.6. However, the median R_eta values of high- andlow-redshift galaxies are consistent with each other. This result isconsistent with the simulations of galaxy images at redshifts z=0.35,z=0.5, and z=0.9, which show that the metric sizes can be recoveredwithin +/-2 kpc. The flocculency or power at high spatial frequencies isquantified using a simple method that is based on surface photometry inone band and that depends on the size of the star-forming regions and onthe intensity profile of the galaxy. In nearby galaxies, the flocculencyis found to trace the star formation rate as chi is correlated withoptical colors (B-V) and the strength of the hydrogen recombinationlines (Hα). In the HDF, galaxies at redshifts smaller than z~1 andwith fluxes brighter than B=25 have values of chi similar to what ismeasured in nearby galaxies and to what is expected from simulations ofdistant galaxy images. Among the HDF galaxies, I find that at most 4%can be identified as dwarf galaxies with rates of star formation similarto NGC 4449 and NGC 1569. Most HDF galaxies are giants with starformation rates similar to those in nearby giant galaxies. In summary,in this study I have introduced a method to measure the metric sizes andflocculency of the two-dimensional light distribution of galaxies. As aresult, I find that the high spatial frequency power is related to thestar formation rate. Further, I find that the sizes and power at highspatial frequencies of HDF galaxies remain largely unchanged between thepresent epoch and redshifts lower than z~1.

The Disks of Galaxies with Seyfert and Starburst Nuclei. II. Near-Infrared Structural Properties
We have derived the near-infrared structural components of a sample ofSeyfert and starburst (SBN) host galaxies by fitting near-infraredimages with a new two-dimensional decomposition algorithm. An analysisof the fitted parameters shows that Seyfert 1 and SBN bulges resemblenormal early-type bulges in structure and color, with (J-K)^c_b about0.1 mag redder than disk (J-K)^c_d. Seyfert 2 bulges, on the other hand,are bluer than normal, with (J-K)^c_b ~ (J-K)^c_d. Seyfert disks(especially type 1), but not those of SBNs, are abnormally bright (insurface brightness), significantly more so than even the brightestnormal disks. Seyfert disks are also compact, but similar to those innormal early-type spirals. For a given mass, Seyfert and particularlySBN galaxies are abnormally rich in neutral hydrogen, and there isstrong, albeit indirect, evidence for lower mass-to-light (M/L) ratiosin Seyfert and SBN disks, but normal M/L ratios in their bulges. InSeyfert and SBN galaxies, H I mass fractions and M/L ratios areanticorrelated, and we attribute the high gas mass fractions and low M/Lratios in SBNs and several Seyfert galaxies to ongoing star formation.Such abundant gas in Seyfert galaxies would be expected to inhibit barformation, which may explain why active galaxies are not always barred.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Пегаз
Ректацензија:00h09m53.40s
Deклинација:+25°55'25.0"
Привидна димензија:1.738′ × 1.349′

Каталог и designations:
Proper имена   (Edit)
NGC 2000.0NGC 23
HYPERLEDA-IPGC 698

→ Захтевај још каталога од VizieR