Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

NGC 4596


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

The SAURON project - VII. Integral-field absorption and emission-line kinematics of 24 spiral galaxy bulges
We present observations of the stellar and gas kinematics for arepresentative sample of 24 Sa galaxies obtained with our custom-builtintegral-field spectrograph SAURON operating on the William HerschelTelescope. The data have been homogeneously reduced and analysed bymeans of a dedicated pipeline. All resulting data cubes were spatiallybinned to a minimum mean signal-to-noise ratio of 60 per spatial andspectral resolution element. Our maps typically cover thebulge-dominated region. We find a significant fraction of kinematicallydecoupled components (12/24), many of them displaying central velocitydispersion minima. They are mostly aligned and co-rotating with the mainbody of the galaxies, and are usually associated with dust discs andrings detected in unsharp-masked images. Almost all the galaxies in thesample (22/24) contain significant amounts of ionized gas which, ingeneral, is accompanied by the presence of dust. The kinematics of theionized gas are consistent with circular rotation in a disc co-rotatingwith respect to the stars. The distribution of mean misalignmentsbetween the stellar and gaseous angular momenta in the sample suggeststhat the gas has an internal origin. The [OIII]/Hβ ratio is usuallyvery low, indicative of current star formation, and shows variousmorphologies (ring-like structures, alignments with dust lanes oramorphous shapes). The star formation rates (SFRs) in the sample arecomparable with that of normal disc galaxies. Low gas velocitydispersion values appear to be linked to regions of intense starformation activity. We interpret this result as stars being formed fromdynamically cold gas in those regions. In the case of NGC5953, the datasuggest that we are witnessing the formation of a kinematicallydecoupled component from cold gas being acquired during the ongoinginteraction with NGC5954.

Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research
This review discusses the current status of supermassive black holeresearch, as seen from a purely observational standpoint. Since theearly ‘90s, rapid technological advances, most notably the launchof the Hubble Space Telescope, the commissioning of the VLBA andimprovements in near-infrared speckle imaging techniques, have not onlygiven us incontrovertible proof of the existence of supermassive blackholes, but have unveiled fundamental connections between the mass of thecentral singularity and the global properties of the host galaxy. It isthanks to these observations that we are now, for the first time, in aposition to understand the origin, evolution and cosmic relevance ofthese fascinating objects.

How large are the bars in barred galaxies?
I present a study of the sizes (semimajor axes) of bars in discgalaxies, combining a detailed R-band study of 65 S0-Sb galaxies withthe B-band measurements of 70 Sb-Sd galaxies from Martin (1995). As hasbeen noted before with smaller samples, bars in early-type (S0-Sb)galaxies are clearly larger than bars in late-type (Sc-Sd) galaxies;this is true both for relative sizes (bar length as fraction ofisophotal radius R25 or exponential disc scalelength h) andabsolute sizes (kpc). S0-Sab bars extend to ~1-10 kpc (mean ~ 3.3 kpc),~0.2-0.8R25 (mean ~ 0.38R25) and ~0.5-2.5h (mean ~1.4h). Late-type bars extend to only ~0.5-3.5 kpc,~0.05-0.35R25 and 0.2-1.5h their mean sizes are ~1.5 kpc, ~0.14R25 and ~0.6h. Sb galaxies resemble earlier-type galaxiesin terms of bar size relative to h; their smallerR25-relative sizes may be a side effect of higher starformation, which increases R25 but not h. Sbc galaxies form atransition between the early- and late-type regimes. For S0-Sbcgalaxies, bar size correlates well with disc size (both R25and h); these correlations are stronger than the known correlation withMB. All correlations appear to be weaker or absent forlate-type galaxies; in particular, there seems to be no correlationbetween bar size and either h or MB for Sc-Sd galaxies.Because bar size scales with disc size and galaxy magnitude for mostHubble types, studies of bar evolution with redshift should selectsamples with similar distributions of disc size or magnitude(extrapolated to present-day values); otherwise, bar frequencies andsizes could be mis-estimated. Because early-type galaxies tend to havelarger bars, resolution-limited studies will preferentially find bars inearly-type galaxies (assuming no significant differential evolution inbar sizes). I show that the bars detected in Hubble Space Telescope(HST) near-infrared(IR) images at z~ 1 by Sheth et al. have absolutesizes consistent with those in bright, nearby S0-Sb galaxies. I alsocompare the sizes of real bars with those produced in simulations anddiscuss some possible implications for scenarios of secular evolutionalong the Hubble sequence. Simulations often produce bars as large as(or larger than) those seen in S0-Sb galaxies, but rarely any as smallas those in Sc-Sd galaxies.

Multicomponent decompositions for a sample of S0 galaxies
We have estimated the bulge-to-total (B/T) light ratios in theKs band for a sample of 24 S0, S0/a and Sa galaxies byapplying a two-dimensional multicomponent decomposition method. For thedisc an exponential function is used, the bulges are fitted by aSérsic R1/n function and the bars and ovals aredescribed either by a Sérsic or a Ferrers function. In order toavoid non-physical solutions, preliminary characterization of thestructural components is made by inspecting the radial profiles of theorientation parameters and the low azimuthal wavenumber Fourieramplitudes and phases. In order to identify also the inner structures,unsharp masks were created: previously undetected inner spiral arms werefound in NGC 1415 and marginally in NGC 3941. Most importantly, we foundthat S0s have a mean K ratio of 0.24 +/- 0.11,which is significantly smaller than the mean R=0.6 generally reported in the literature. Also, the surface brightnessprofiles of the bulges in S0s were found to be more exponential-likethan generally assumed, the mean shape parameter of the bulge being= 2.1 +/- 0.7. We did not find examples of barred S0s lackingthe disc component, but we found some galaxies (NGC 718, 1452 and 4608)having a non-exponential disc in the bar region. To our knowledge, ourstudy is the first attempt to apply a multicomponent decompositionmethod for a moderately sized sample of early-type disc galaxies.

On the Relevance of the Tremaine-Weinberg Method Applied to an Hα Velocity Field: Pattern Speed Determination in M100 (NGC 4321)
The relevance of the Tremaine-Weinberg (TW) method is tested formeasuring bar, spiral, and inner structure pattern speeds using agaseous velocity field. The TW method is applied to various simulatedbarred galaxies in order to demonstrate its validity in seven differentconfigurations, including star formation and/or dark matter halo. Thereliability of the different physical processes involved and of thevarious observational parameters is also tested. The simulations showthat the TW method could be applied to gaseous velocity fields to get agood estimate of the bar pattern speed, under the condition that regionsof shocks are avoided and measurements are confined to regions where thegaseous bar is well formed. We successfully apply the TW method to theHα velocity field of the Virgo Cluster galaxy M100 (NGC 4321) andderive pattern speeds of 55+/-5 km s-1 kpc-1 forthe nuclear structure, 30+/-2 km s-1 kpc-1 for thebar, and 20+/-1 km s-1 kpc-1 for the spiralpattern, in full agreement with published determinations using the samemethod or alternative ones.

The Stellar Populations in the Central Parsecs of Galactic Bulges
We present Hubble Space Telescope blue spectra at intermediate spectralresolution for the nuclei of 23 nearby disk galaxies. These objects wereselected to have nebular emission in their nuclei and span a range ofemission-line classifications, as well as Hubble types. In this paper wefocus on the stellar population as revealed by the continuum spectralenergy distribution measured within the central 0.13" (~8 pc) of thesegalaxies. The data were modeled with linear combinations of single-agestellar population synthesis models. The large majority (~80%) of thesurveyed nuclei have spectra whose features are consistent with apredominantly old (>~5×109 yr) stellar population.Approximately 25% of these nuclei show evidence of a component with ageyounger than 1 Gyr, with the incidence of these stars related to thenebular classification. Successful model fits imply an average reddeningcorresponding to AV~0.4 mag and a stellar metallicity of1-2.5 Zsolar. We discuss the implications of these resultsfor understanding the star formation history in the environment ofquiescent and active supermassive black holes. Our findings reinforcethe picture wherein Seyfert nuclei and the majority of low-ionizationnuclear emission-line regions are predominantly accretion-powered andsuggest that much of the central star formation in H II nuclei isactually circumnuclear.Based on observations obtained with the Hubble Space Telescope, which isoperated by AURA, Inc., under NASA contract NAS5-26555.

The Low End of the Supermassive Black Hole Mass Function: Constraining the Mass of a Nuclear Black Hole in NGC 205 via Stellar Kinematics
Hubble Space Telescope (HST) images and spectra of the nucleated dwarfelliptical galaxy NGC 205 are combined with three-integral axisymmetricdynamical models to constrain the mass MBH of a putativenuclear black hole. This is only the second attempt, after M33, to useresolved stellar kinematics to search for a nuclear black hole with massbelow 106 solar masses. We are unable to identify a best-fitvalue of MBH in NGC 205; however, the data impose a upperlimit of 2.2×104 Msolar (1 σconfidence) and an upper limit of 3.8×104Msolar (3 σ confidence). This upper limit is consistentwith the extrapolation of the MBH-σ relation to theMBH<106 Msolar regime. If we assumethat NGC 205 and M33 both contain nuclear black holes, the upper limitson MBH in the two galaxies imply a slope of ~5.5 or greaterfor the MBH-σ relation. We use our three-integralmodels to evaluate the relaxation time and stellar collision time in NGC205; Tr is ~108 yr or less in the nucleus, andTcoll~1011 yr. The low value of Tr isconsistent with core collapse having already occurred, but we are unableto draw conclusions from nuclear morphology about the presence orabsence of a massive black hole.

Antitruncation of Disks in Early-Type Barred Galaxies
The disks of spiral galaxies are commonly thought to be truncated: theradial surface brightness profile steepens sharply beyond a certainradius (3-5 inner disk scale lengths). Here we present the radialbrightness profiles of a number of barred S0-Sb galaxies with theopposite behavior: their outer profiles are distinctly shallower inslope than the main disk profile. We term these ``antitruncations'' theyare found in at least 25% of a larger sample of barred S0-Sb galaxies.There are two distinct types of antitruncations. About one-third show afairly gradual transition and outer isophotes that are progressivelyrounder than the main disk isophotes, suggestive of a disk embeddedwithin a more spheroidal outer zone-either the outer extent of the bulgeor a separate stellar halo. But the majority of the profiles have rathersharp surface brightness transitions to the shallower, outer exponentialprofile and, crucially, outer isophotes that are not significantlyrounder than the main disk; in the Sab-Sb galaxies, the outer isophotesinclude visible spiral arms. This suggests that the outer light is stillpart of the disk. A subset of these profiles are in galaxies withasymmetric outer isophotes (lopsided or one-armed spirals), suggestingthat interactions may be responsible for at least some of the disklikeantitruncations.

Origin of Radio Emission from Nearby Low-Luminosity Active Galactic Nuclei
We use the observational data in radio, optical, and X-ray wave bandsfor a sample of active galactic nuclei (AGNs) with measured black holemasses to explore the origin of radio emission from nearbylow-luminosity active galactic nuclei (LLAGNs). The maximal luminosityof an advection-dominated accretion flow (ADAF) can be calculated for agiven black hole mass, as there is a critical accretion rate above whichthe ADAF is no longer present. We find that the radio luminosities arehigher than the maximal luminosities expected from the ADAF model formost sources in this sample. This implies that the radio emission ispredominantly from the jets in these sources. The radio emission from asmall fraction of the sources (15/60; referred to as radio-weak sources)in this sample can be explained by the ADAF model. However, comparingthe observed multiband emission data with the spectra calculated for theADAF or adiabatic inflow-outflow solution (ADIOS) cases, we find thatneither ADAF nor ADIOS models can reproduce the observed multibandemission simultaneously, with reasonable magnetic field strengths, forthese radio-weak sources. A variety of other possibilities arediscussed, and we suggest that the radio emission is probably dominatedby jet emission even in these radio-weak LLAGNs.

Completing H I observations of galaxies in the Virgo cluster
High sensitivity (rms noise ˜ 0.5 mJy) 21-cm H I line observationswere made of 33 galaxies in the Virgo cluster, using the refurbishedArecibo telescope, which resulted in the detection of 12 objects. Thesedata, combined with the measurements available from the literature,provide the first set of H I data that is complete for all 355 late-type(Sa-Im-BCD) galaxies in the Virgo cluster with mp ≤ 18.0mag. The Virgo cluster H I mass function (HIMF) that was derived forthis optically selected galaxy sample is in agreement with the HIMFderived for the Virgo cluster from the blind HIJASS H I survey and isinconsistent with the Field HIMF. This indicates that both in this richcluster and in the general field, neutral hydrogen is primarilyassociated with late-type galaxies, with marginal contributions fromearly-type galaxies and isolated H I clouds. The inconsistency betweenthe cluster and the field HIMF derives primarily from the difference inthe optical luminosity function of late-type galaxies in the twoenvironments, combined with the HI deficiency that is known to occur ingalaxies in rich clusters.Tables \ref{t1, \ref{sample_dat} and Appendix A are only available inelectronic form at http://www.edpsciences.org

Fast bars in SB0 galaxies
We measured the bar pattern speed in a sample of 7 SB0 galaxies usingthe Tremaine-Weinberg method. This represents the largest sample ofgalaxies for which the bar pattern speed has been measured this way. Allthe observed bars are as rapidly rotating as they can be. We comparedthis result with recent high-resolution N-body simulations of bars incosmologically-motivated dark matter halos, and conclude that these barsare not located inside centrally concentrated halos.

The Pattern Speeds of M51, M83, and NGC 6946 Using CO and the Tremaine-Weinberg Method
In spiral galaxies in which the molecular phase dominates the ISM, themolecular gas as traced by CO emission will approximately obey thecontinuity equation on orbital timescales. The Tremaine-Weinberg methodcan then be used to determine the pattern speed of such galaxies. Wehave applied the method to single-dish CO maps of three nearby spirals,M51, M83, and NGC 6946, to obtain estimates of their pattern speeds:38+/-7, 45+/-8, and 39+/-8 km s-1 kpc-1,respectively, and we compare these results to previous measurements. Wealso analyze the major sources of systematic errors in applying theTremaine-Weinberg method to maps of CO emission.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

Spectrophotometry of galaxies in the Virgo cluster. II. The data
Drift-scan mode (3600-6800 Å) spectra with 500

Detailed comparison of the structures and kinematics of simulated and observed barred galaxies
We examine the observable properties of simulated barred galaxies,including radial mass profiles, edge-on structure and kinematics, barlengths and pattern speed evolution for detailed comparison to realsystems. We have run several simulations in which bars are createdthrough inherent instabilities in self-consistent simulations of arealistic disc+halo galaxy model with a disc-dominated, flat rotationcurve. These simulations were run at high (N= 20 million particles) andlow (N= 500000 particles) resolution to test numerical convergence. Wedetermine the pattern speeds in simulations directly from the phaseangle of the bar versus time and the Tremaine-Weinberg method.Fundamental dynamics do not change between the high and low resolution,suggesting that convergence has been reached in this case. We find thatthe higher resolution is needed to simulate structural and kinematicproperties accurately. The edge-on view of the higher-resolution systemshows the bending instability and formation of a peanut-shaped bulgeclearly. We determined bar lengths by different means to determine thatthe simulated bar is fast, with a corotation to bar length ratio ofunder 1.5. Simulated bars in these models form with pattern speedsslower than those observed and slow-down during their evolution.Dynamical friction between the bar and dark halo is responsible for thisdeceleration, as revealed by the transfer of angular momentum betweenthe disc and the halo. However, even though the pattern speed is reducedat later times, the instantaneous scalelength of the disc has grownsufficiently for the bar motion to agree with many observations. Byusing a different model and simulation technique than other authors, weare able to compare the robustness of these methods. An animation of theface-on and edge-on views of the 20-million-particle simulation isavailable at http://www.astro.utoronto.ca/~oneill.

Secular bar formation in galaxies with a significant amount of dark matter
Using high-resolution N-body simulations of stellar discs embedded incosmologically motivated dark matter haloes, we study the evolution ofbars and the transfer of angular momentum between haloes and bars. Wefind that dynamical friction results in some transfer of angularmomentum to the halo, but the effect is much smaller than previouslyfound in low-resolution simulations and is incompatible with earlyanalytical estimates. After 5 Gyr of evolution the stellar componentloses only 5-7 per cent of its initial angular momentum.Mass and force resolutions are crucial for the modelling of bardynamics. In low-resolution (300-500 pc) simulations we find that thebar slows down and angular momentum is lost relatively fast. Insimulations with millions of particles reaching a resolution of 20-40pc, the pattern speed may not change over billions of years. Ourhigh-resolution models produce bars that are fast rotators, where theratio of the corotation radius to the bar semi-major axis lies in therange , marginally compatible with observational results. In contrast tomany previous simulations, we find that bars are relatively short. As inmany observed cases, the bar semi-major axis is close to the exponentiallength of the disc.The transfer of angular momentum between inner and outer parts of thedisc plays a very important role in the secular evolution of the discand the bar. The bar formation increases the exponential length of thedisc by a factor of 1.2-1.5. The transfer substantially increases thestellar mass in the centre of the galaxy and decreases the dark matterto baryon ratio. As the result, the central 2-kpc region is alwaysstrongly dominated by the baryonic component. At intermediate (3-10 kpc)scales the disc is sub-dominant. These models demonstrate that theefficiency of angular momentum transfer to the dark matter has beengreatly overestimated. More realistic models produce bar structure instriking agreement with observational results.

Model-independent measurements of bar pattern speeds
The pattern speed is one of the fundamental parameters that determinesthe structure of barred galaxies. This quantity is usually derived fromindirect methods or by employing model assumptions. The number of barpattern speeds derived using the model-independent Tremaine &Weinberg technique is still very limited. We present the results ofmodel-independent measurements of the bar pattern speed in four galaxiesranging in Hubble type from SB0 to SBbc. Three of the four galaxies inour sample are consistent with bars being fast rotators. The lack ofslow bars is consistent with previous observations and suggests thatbarred galaxies do not have centrally concentrated dark matter haloes.This contradicts simulations of cosmological structure formation andobservations of the central mass concentration in nonbarred galaxies.

On position angle errors in the Tremaine-Weinberg method
I show that Tremaine-Weinberg (TW) measurements of bar pattern speedsare sensitive to errors in the position angle of the disc,PAdisc. I use an N-body experiment to measure these errors;for typical random PAdisc errors, the resulting scatter inthe measured values of the dimensionless bar speed parameter (defined asthe ratio of the corotation radius to the bar semi-major axis) is of theorder of the scatter in the observed values.I also consider how the systematic PAdisc errors produced bydisc ellipticities affect TW measurements. The scatter produced by theseerrors may be significant, depending on the ellipticity distribution.Conversely, by using the sample of TW observations, I find that an upperlimit of the typical disc (density) ellipticity is 0.07 at the 90 percent confidence level, which is in good agreement with previousmeasurements.Taken together, the random and systematic scatter suggest that theintrinsic distribution of of gas-poor early-type barred galaxies may beas narrow as that of the gas-rich later types.

Orbital dynamics of three-dimensional bars - IV. Boxy isophotes in face-on views
We study the conditions that favour boxiness of isodensities in theface-on views of orbital 3D models for barred galaxies. Using orbitalweighted profiles we show that boxiness is in general a composite effectthat appears when one considers stable orbits belonging to severalfamilies of periodic orbits. 3D orbits that are introduced due tovertical instabilities play a crucial role in the face-on profiles andenhance their rectangularity. This happens because at the 4:1 radialresonance region we have several orbits with boxy face-on projections,instead of a few rectangular-like x1 orbits, which, in a fair fractionof the models studied so far, are unstable in this region. Massive barsare characterized by rectangular-like orbits. However, we find that itis the pattern speed that affects the elongation of the boxy featuremost, in the sense that fast bars are more elongated than slow ones.Boxiness in intermediate distances between the centre of the model andthe end of the bar can be attributed to x1v1 orbits, or to a combinationof families related to the radial 3:1 resonance.

Measurement of fast bars in a sample of early-type barred galaxies
We present surface photometry and stellar kinematics of a sample of fiveSB0 galaxies: ESO 139-G009, IC 874, NGC 1308, NGC 1440 and NGC 3412. Wemeasured their bar pattern speed using the Tremaine-Weinberg method, andderived the ratio, , of the corotation radius to the length of the barsemimajor axis. For all the galaxies, is consistent with being in therange from 1.0 to 1.4, i.e. that they host fast bars. This representsthe largest sample of galaxies for which has been measured in this way.Taking into account the measured distribution of and our measurementuncertainties, we argue that this is probably the true distribution of .If this is the case, then the Tremaine-Weinberg method finds adistribution of which is in agreement with that obtained byhydrodynamical simulations. We compare this result with recenthigh-resolution N-body simulations of bars in cosmologically motivateddark matter haloes, and we conclude that these bars are not locatedinside centrally concentrated dark matter haloes.

Fast bars in early-type barred galaxies
We measured the bar pattern speed of a sample of 6 SB0 galaxies usingthe Tremaine-Weinberg method. We derived the ratio, {cal R}, of thecorotation radius to the length of the bar semi-major axis. For all thegalaxies, {cal R} is consistent with being in the range from 1.0 and1.4, i.e. that they host fast bars. This represents the largest sampleof galaxies for which {cal R} has been measured this way. We comparedthis result with recent high-resolution N-body simulations of bars incosmologically-motivated dark matter halos, and conclude that these barsare not located inside centrally concentrated dark matter halos.

When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945
We present a detailed morphological, photometric, and kinematic analysisof two barred S0 galaxies with large, luminous inner disks inside theirbars. We show that these structures, in addition to being geometricallydisklike, have exponential profiles (scale lengths ~300-500 pc) distinctfrom the central, nonexponential bulges. We also find them to bekinematically disklike. The inner disk in NGC 2787 has a luminosityroughly twice that of the bulge; but in NGC 3945, the inner disk isalmost 10 times more luminous than the bulge, which itself is extremelysmall (half-light radius ~100 pc, in a galaxy with an outer ring ofradius ~14 kpc) and has only ~5% of the total luminosity-a bulge/totalratio much more typical of an Sc galaxy. We estimate that at least 20%of (barred) S0 galaxies may have similar structures, which means thattheir bulge/disk ratios may be significantly overestimated. These innerdisks dominate the central light of their galaxies; they are at least anorder of magnitude larger than typical ``nuclear disks'' found inelliptical and early-type spiral galaxies. Consequently, they mustaffect the dynamics of the bars in which they reside.

On the Nature of Low-Luminosity Narrow-Line Active Galactic Nuclei
There is clear observational evidence that some narrow-line (type 2)active galactic nuclei (AGNs) have a hidden broad-line region (BLR) andare thus intrinsically broad-line (type 1) AGNs. Does this AGNunification apply for all type 2 AGNs? Indirect arguments suggest thatsome ``true'' type 2 AGNs, i.e., AGNs having no obscured BLR, do exist,but it is not clear why the BLR is missing in these AGNs. Here we pointout a possible natural explanation. The observed radius-luminosityrelation for the BLR implies an increasing line width with decreasingluminosity for a given black hole mass (MBH). In addition,there appears to be an upper limit to the observed width of broademission lines in AGNs of Δvmax~25,000 kms-1, which may reflect a physical limit above which the BLRmay not be able to survive. Thus, at a low enough luminosity the BLRradius shrinks below the Δvmax radius, leaving noregion where the BLR can exist, although the AGN may remain otherwise``normal.'' The implied minimum bolometric luminosity required tosustain a BLR with Δv<25,000 km s-1 isLmin~1041.8(MBH/108Msolar)2.All AGNs with L

The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity
We present new accurate near-infrared (NIR) spheroid (bulge) structuralparameters obtained by a two-dimensional image analysis of all galaxieswith a direct black hole (BH) mass determination. As expected, NIR bulgeluminosities Lbul and BH masses are tightly correlated, andif we consider only those galaxies with a secure BH mass measurement andan accurate Lbul (27 objects), the spread ofMBH-Lbul is similar toMBH-σe, where σe is theeffective stellar velocity dispersion. We find an intrinsic rms scatterof ~=0.3 dex in logMBH. By combining the bulge effectiveradii Re measured in our analysis with σe,we find a tight linear correlation (rms~=0.25 dex) betweenMBH and the virial bulge mass(~Reσ2e), with~0.002. A partial correlationanalysis shows that MBH depends on both σeand Re and that both variables are necessary to drive thecorrelations between MBH and other bulge properties.

Redshift-Distance Survey of Early-Type Galaxies: Circular-Aperture Photometry
We present R-band CCD photometry for 1332 early-type galaxies, observedas part of the ENEAR survey of peculiar motions using early-typegalaxies in the nearby universe. Circular apertures are used to tracethe surface brightness profiles, which are then fitted by atwo-component bulge-disk model. From the fits, we obtain the structuralparameters required to estimate galaxy distances using theDn-σ and fundamental plane relations. We find thatabout 12% of the galaxies are well represented by a pure r1/4law, while 87% are best fitted by a two-component model. There are 356repeated observations of 257 galaxies obtained during different runsthat are used to derive statistical corrections and bring the data to acommon system. We also use these repeated observations to estimate ourinternal errors. The accuracy of our measurements are tested by thecomparison of 354 galaxies in common with other authors. Typical errorsin our measurements are 0.011 dex for logDn, 0.064 dex forlogre, 0.086 mag arcsec-2 for<μe>, and 0.09 for mRC,comparable to those estimated by other authors. The photometric datareported here represent one of the largest high-quality and uniformall-sky samples currently available for early-type galaxies in thenearby universe, especially suitable for peculiar motion studies.Based on observations at Cerro Tololo Inter-American Observatory (CTIO),National Optical Astronomy Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation (NSF);European Southern Observatory (ESO); Fred Lawrence Whipple Observatory(FLWO); and the MDM Observatory on Kitt Peak.

UV to radio centimetric spectral energy distributions of optically-selected late-type galaxies in the Virgo cluster
We present a multifrequency dataset for an optically-selected,volume-limited, complete sample of 118 late-type galaxies (>=S0a) inthe Virgo cluster. The database includes UV, visible, near-IR, mid-IR,far-IR, radio continuum photometric data as well as spectroscopic dataof Hα , CO and HI lines, homogeneously reduced, obtained from ourown observations or compiled from the literature. Assuming the energybalance between the absorbed stellar light and that radiated in the IRby dust, we calibarte an empirical attenuation law suitable forcorrecting photometric and spectroscopic data of normal galaxies. Thedata, corrected for internal extinction, are used to construct thespectral energy distribution (SED) of each individual galaxy, andcombined to trace the median SED of galaxies in various classes ofmorphological type and luminosity. Low-luminosity, dwarf galaxies haveon average bluer stellar continua and higher far-IR luminosities perunit galaxy mass than giant, early-type spirals. If compared to nearbystarburst galaxies such as M 82 and Arp 220, normal spirals haverelatively similar observed stellar spectra but 10-100 times lower IRluminosities. The temperature of the cold dust component increases withthe far-IR luminosity, from giant spirals to dwarf irregulars. The SEDare used to separate the stellar emission from the dust emission in themid-IR regime. We show that the contribution of the stellar emission at6.75 mu m to the total emission of galaxies is generally important, from~ 80% in Sa to ~ 20% in Sc.Tables 2-5, 7, 8, and Fig. 2 are only available in electronic form athttp://www.edpsciences.orgTables 10-12 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/37

[C II] emission and star formation in late-type galaxies. II. A model
We study the relationship between gas cooling via the [C II] (lambda =158 μm) line emission and dust cooling via the far-IR continuumemission on the global scale of a galaxy in normal (i.e. non-AGNdominated and non-starburst) late-type systems. It is known that theluminosity ratio of total gas and dust cooling, LC II/LFIR, shows a non-linear behaviour with the equivalent widthof the H alpha (lambda = 6563 Å) line emission, the ratiodecreasing in galaxies of lower massive star-formation activity. Thisresult holds despite the fact that known individual Galactic andextragalactic sources of the [C II] line emission show different [C II]line-to-far-IR continuum emission ratios. This non-linear behaviour isreproduced by a simple quantitative theoretical model of gas and dustheating from different stellar populations, assuming that thephotoelectric effect on dust, induced by far-UV photons, is the dominantmechanism of gas heating in the general diffuse interstellar medium ofthe galaxies under investigation. According to the model, the globalLC II/LFIR provides a direct measure of thefractional amount of non-ionizing UV light in the interstellar radiationfield and not of the efficiency of the photoelectric heating. The theoryalso defines a method to constrain the stellar initial mass functionfrom measurements of LC II and LFIR. A sample of20 Virgo cluster galaxies observed in the [C II] line with the LongWavelength Spectrometer on board the Infrared Space Observatory is usedto illustrate the model. The limited statistics and the necessaryassumptions behind the determination of the global [C II] luminositiesfrom the spatially limited data do not allow us to establish definitiveconclusions but data-sets available in the future will allow tests ofboth the reliability of the assumptions behind our model and thestatistical significance of our results.Based on observations with the Infrared Space Observatory (ISO), an ESAproject with instruments funded by ESA member states (especially the PIcountries: France, Germany, The Netherlands and the UK) and with theparticipation of ISAS and NASA.

An Efficient Strategy to Select Targets for Gasdynamical Measurements of Black Hole Masses Using the Hubble Space Telescope
Gasdynamical studies using the Hubble Space Telescope are an integralcomponent for future progress in the search for massive black holes ingalactic nuclei. Here we present an extensive set of gas rotation curvesobtained with the Space Telescope Imaging Spectrograph for the centralregions of 23 disk galaxies. We find that the bulges of randomlyselected, nearby spiral and S0 galaxies generally do not containwell-defined gaseous disks. Only 15%-20% of disk galaxies have regular,symmetric velocity fields useful for dynamical analysis. Throughcomparison of the kinematics with Hubble Space Telescope images of thenuclear regions, we show that the probability of success can besignificantly boosted by preselecting objects whose central dust lanesfollow a well-ordered, circularly symmetric pattern. The dust morphologycan be ascertained efficiently by visual inspection of unsharp-maskedimages. Based on observations made with the Hubble Space Telescope,which is operated by AURA, Inc., under NASA contract NAS 5-26555.

Evidence for black holes
As an important test for General Relativity, the existence of a blackhole is always the focus of physicists and astronomers. Particularly inthese years, since a large number of advanced observational facilitiesare put into use and the techniques improved, the search for theevidence for black holes have made great progress, becoming one ofastronomical researching hotspots. In this paper, evidence for stellarblack holes and super-massive black holes in galactic nuclei isreviewed, and the great advances in black hole astrophysics are alsointroduced. Finally, we discuss some great developing projects and theprimary results of pursuing primordial black holes. The suggestions forobservations and the respect of astronomical evidence for black holesare put forward.

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Дева
Прямое восхождение:12h39m56.10s
Склонение:+10°10'32.0"
Видимый размер:3.981′ × 3.311′

Каталоги и обозначения:
Собственные имена   (Edit)
NGC 2000.0NGC 4596
HYPERLEDA-IPGC 42401
J/AJ/90/1681VCC 1813

→ Запросить дополнительные каталоги и обозначения от VizieR