Contents
Images
Upload your image
DSS Images Other Images
Related articles
Observation and modelling of main-sequence star chromospheres - XVI. Rotation of dK5 stars Using two different spectrographs, High Accuracy Radial velocity PlanetSearch (HARPS) (European Southern Observatory) and SOPHIE (Observatoirede Haute Provence), we have measured v sin i for a sample of dK5 stars.These are the first measurements of v sin i for most of the starsstudied here.We measured v sin i to an accuracy of 0.3 km s-1 and adetection limit of about 0.5-1 km s-1. All our targets havesimilar (R - I)c colour. This is an advantage and facilitatesthe determination of the narrowest line profiles for v sin i ˜ 0.In our total sample, we detected rotation for 22 stars (three dK5e and19 dK5 stars), and we did not detect rotation in a further 22 stars.This result shows that there are many dK5 slow rotators, and many morethan for dM1 stars. We also report on a newly discovered dK5e star, McC522, which is also the fastest rotator in our sample.We determine radii and effective temperatures for all our target stars.The effective temperatures were derived using the (R - I)ccolour and empirical far-red colour-effective temperature correlations,and the radii were derived from the standard formulae relatingMbol, bolometric correction and Teff.We find that the distribution of P/sin i (the projected rotation period)is rather homogeneous, i.e. the distribution of the 22 detected stars asa function of P/sin i is approximately flat and does not show anymaximum, unlike for dM1 stars, a close spectral type. We find that thedistribution in v sin i is bimodal, as in dM1 stars, with fast dK5erotators and slower dK5 rotators. Based on observations available atObservatoire de Haute Provence and the European Southern Observatorydata bases and on Hipparcos parallax measurements.
| Proper-motion binaries in the Hipparcos catalogue. Comparison with radial velocity data Context: .This paper is the last in a series devoted to the analysis ofthe binary content of the Hipparcos Catalogue. Aims: .Thecomparison of the proper motions constructed from positions spanning ashort (Hipparcos) or long time (Tycho-2) makes it possible to uncoverbinaries with periods of the order of or somewhat larger than the shorttime span (in this case, the 3 yr duration of the Hipparcos mission),since the unrecognised orbital motion will then add to the propermotion. Methods: .A list of candidate proper motion binaries isconstructed from a carefully designed χ2 test evaluatingthe statistical significance of the difference between the Tycho-2 andHipparcos proper motions for 103 134 stars in common between the twocatalogues (excluding components of visual systems). Since similar listsof proper-motion binaries have already been constructed, the presentpaper focuses on the evaluation of the detection efficiency ofproper-motion binaries, using different kinds of control data (mostlyradial velocities). The detection rate for entries from the NinthCatalogue of Spectroscopic Binary Orbits (S_B^9) is evaluated, as wellas for stars like barium stars, which are known to be all binaries, andfinally for spectroscopic binaries identified from radial velocity datain the Geneva-Copenhagen survey of F and G dwarfs in the solarneighbourhood. Results: .Proper motion binaries are efficientlydetected for systems with parallaxes in excess of ~20 mas, and periodsin the range 1000-30 000 d. The shortest periods in this range(1000-2000 d, i.e., once to twice the duration of the Hipparcos mission)may appear only as DMSA/G binaries (accelerated proper motion in theHipparcos Double and Multiple System Annex). Proper motion binariesdetected among S_B9 systems having periods shorter than about400 d hint at triple systems, the proper-motion binary involving acomponent with a longer orbital period. A list of 19 candidate triplesystems is provided. Binaries suspected of having low-mass(brown-dwarf-like) companions are listed as well. Among the 37 bariumstars with parallaxes larger than 5 mas, only 7 exhibit no evidence forduplicity whatsoever (be it spectroscopic or astrometric). Finally, thefraction of proper-motion binaries shows no significant variation amongthe various (regular) spectral classes, when due account is taken forthe detection biases.Full Table [see full textsee full text] is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/464/377
| Statistical Constraints for Astrometric Binaries with Nonlinear Motion Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).
| A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog) The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Photometry of dwarf K and M stars An observational program using UBVRI photometry is presented for 688stars from among the dwarf K and M stars already found spectroscopicallyby Vyssotsky (1958). Of these, 211 have not been observedphotometrically. These observations were obtained over a period ofseveral years at the Kitt Peak National Observatory using a GaAsphotomultiplier with an 0.9 m reflector. Based on night-to-nightvariations in the measures of individual stars, the internal errors maybe estimated to be roughly 0.01 mag for the colors and 0.015 for the Vmagnitudes. The photometric parallaxes reported for each star werecomputed in the manner discussed by Weis (1986).
| Photometry of dwarf K and M stars Broadband photometry in BVRI colors for 120 nearby dwarf K and M starsis presented. The apparent magnitude distributions of Vyssotsky and VanVleck stars with photometry and without photometry are studied. Therelationship between apparent and photoelectric magnitudes is analyzed.The proper motion and transverse velocity of the two star types areexamined and compared.
| Photovisual magnitudes of 418 dwarf M stars and 34 parallax stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1956AJ.....61..219S&db_key=AST
| Dwarf M stars found spectrophotometrically . Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1956AJ.....61..201V&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Delphinus |
Right ascension: | 21h00m29.67s |
Declination: | +17°21'51.3" |
Apparent magnitude: | 9.901 |
Distance: | 39.062 parsecs |
Proper motion RA: | -57.7 |
Proper motion Dec: | -166.5 |
B-T magnitude: | 11.232 |
V-T magnitude: | 10.011 |
Catalogs and designations:
|