Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4136


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

The Hα Galaxy Survey . III. Constraints on supernova progenitors from spatial correlations with Hα emission
Aims.We attempt to constrain progenitors of the different types ofsupernovae from their spatial distributions relative to star formationregions in their host galaxies, as traced by Hα + [Nii] lineemission. Methods: .We analyse 63 supernovae which have occurredwithin galaxies from our Hα survey of the local Universe. Threestatistical tests are used, based on pixel statistics, Hα radialgrowth curves, and total galaxy emission-line fluxes. Results:.Many type II supernovae come from regions of low or zero emission lineflux, and more than would be expected if the latter accurately traceshigh-mass star formation. We interpret this excess as a 40% "Runaway"fraction in the progenitor stars. Supernovae of types Ib and Ic doappear to trace star formation activity, with a much higher fractioncoming from the centres of bright star formation regions than is thecase for the type II supernovae. Type Ia supernovae overall show a weakcorrelation with locations of current star formation, but there isevidence that a significant minority, up to about 40%, may be linked tothe young stellar population. The radial distribution of allcore-collapse supernovae (types Ib, Ic and II) closely follows that ofthe line emission and hence star formation in their host galaxies, apartfrom a central deficiency which is less marked for supernovae of typesIb and Ic than for those of type II. Core-collapse supernova ratesoverall are consistent with being proportional to galaxy totalluminosities and star formation rates; however, within this total thetype Ib and Ic supernovae show a moderate bias towards more luminoushost galaxies, and type II supernovae a slight bias towardslower-luminosity hosts.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

The Molecular Interstellar Medium of Dwarf Galaxies on Kiloparsec Scales: A New Survey for CO in Northern, IRAS-detected Dwarf Galaxies
We present a new survey for CO in dwarf galaxies using the ARO Kitt Peak12 m telescope. This survey consists of observations of the centralregions of 121 northern dwarfs with IRAS detections and no known COemission. We detect CO in 28 of these galaxies and marginally detectanother 16, increasing by about 50% the number of such galaxies known tohave significant CO emission. The galaxies we detect are comparable instellar and dynamical mass to the Large Magellanic Cloud, althoughsomewhat brighter in CO and fainter in the far-IR. Within dwarfs, wefind that the CO luminosity LCO is most strongly correlatedwith the K-band and the far-infrared luminosities. There are also strongcorrelations with the radio continuum (RC) and B-band luminosities andlinear diameter. Conversely, we find that far-IR dust temperature is apoor predictor of CO emission within the dwarfs alone, although a goodpredictor of normalized CO content among a larger sample of galaxies. Wesuggest that LCO and LK correlate well because thestellar component of a galaxy dominates the midplane gravitational fieldand thus sets the pressure and density of the atomic gas, which controlthe formation of H2 from H I. We compare our sample with moremassive galaxies and find that dwarfs and large galaxies obey the samerelationship between CO and the 1.4 GHz RC surface brightness. Thisrelationship is well described by a Schmidt law withΣRC~Σ1.3CO. Therefore,dwarf galaxies and large spirals exhibit the same relationship betweenmolecular gas and star formation rate (SFR). We find that this result isrobust to moderate changes in the RC-to-SFR and CO-to-H2conversion factors. Our data appear to be inconsistent with large (orderof magnitude) variations in the CO-to-H2 conversion factor inthe star-forming molecular gas.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

Active and Star-forming Galaxies and Their Supernovae
To investigate the extent to which nuclear starbursts or other nuclearactivity may be connected with enhanced star formation activity in thehost galaxy, we perform a statistical investigation of supernovae (SNe)discovered in host galaxies from four samples: the Markarian galaxiessample, the Second Byurakan Survey (SBS) sample, the north Galactic pole(NGP) sample of active or star-forming galaxies, and the NGP sample ofnormal galaxies. Forty-seven SNe in 41 Mrk galaxies, 10 SNe in six SBSgalaxies, 29 SNe in 26 NGP active or star-forming galaxies, and 29 SNein 26 NGP normal galaxies have been studied. We find that the rate ofSNe, particularly core-collapse (Types Ib/c and II) SNe, is higher inactive or star-forming galaxies in comparison with normal galaxies.Active or star-forming host galaxies of SNe are generally of latermorphological type and have lower luminosity and smaller linear sizethan normal host galaxies of SNe. The radial distribution of SNe inactive and star-forming galaxies shows a higher concentration toward thecenter of the active host galaxy than is the case for normal hostgalaxies, and this effect is more pronounced for core-collapse SNe.Ib/c-type SNe have been discovered only in active and star-forminggalaxies of our samples. About 78% of these SNe are associated with H IIregions or are located very close to the nuclear regions of these activegalaxies, which are in turn hosting AGNs or starburst nuclei. Besidesthese new results, our study also supports the conclusions of severalother earlier papers. We find that Type Ia SNe occur in all galaxytypes, whereas core-collapse SNe of Types Ib/c and II are found only inspiral and irregular galaxies. The radial distribution of Type Ib SNe intheir host galaxies is more centrally concentrated than that of Type IIand Ia SNe. The radial distances of Types Ib/c and II SNe, from thenuclei of their host galaxies, is larger for barred spiral hosts.Core-collapse SNe are concentrated in spiral arms and are often close toor in the H II regions, whereas Type Ia SNe show only a looseassociation with spiral arms and no clear association with H II regions.

The orientation parameters and rotation curves of 15 spiral galaxies
We analyzed ionized gas motion and disk orientation parameters for 15spiral galaxies. Their velocity fields were measured with the Hαemission line by using the Fabry-Perot interferometer at the 6 mtelescope of SAO RAS. Special attention is paid to the problem ofestimating the position angle of the major axis (PA0) and theinclination (i) of a disk, which strongly affect the derived circularrotation velocity. We discuss and compare different methods of obtainingthese parameters from kinematic and photometric observations, takinginto account the presence of regular velocity (brightness) perturbationscaused by spiral density waves. It is shown that the commonly usedmethod of tilted rings may lead to systematic errors in the estimationof orientation parameters (and hence of circular velocity) being appliedto galaxies with an ordered spiral structure. Instead we recommend usingan assumption of constancy of i and PA0 along a radius, toestimate these parameters. For each galaxy of our sample we presentmonochromatic Hα- and continuum maps, velocity fields of ionizedgas, and the mean rotation curves in the frame of a model of purecircular gas motion. Significant deviations from circular motion withamplitudes of several tens of km s-1 (or higher) are found inalmost all galaxies. The character and possible nature of thenon-circular motion are briefly discussed.Based on observations collected with the 6 m telescope of the SpecialAstrophysical Observatory (SAO) of the Russian Academy of Sciences(RAS), operated under the financial support of the Science Department ofRussia (registration number 01-43).Section 4 and Figs. 6-19 are only avalaible in electronic form athttp://www.edpsciences.org

A catalogue of ultraluminous X-ray sources in external galaxies
We present a catalogue of ultraluminous X-ray sources (ULXs) in externalgalaxies. The aim of this catalogue is to provide easy access to theproperties of ULXs, their possible counterparts at other wavelengths(optical, IR, and radio), and their host galaxies. The cataloguecontains 229 ULXs reported in the literature until April 2004. Most ULXsare stellar-mass-black hole X-ray binaries, but it is not excluded thatsome ULXs could be intermediate-mass black holes. A small fraction ofthe candidate ULXs may be background Active Galactic Nuclei (AGN) andSupernova Remnants (SNRs). ULXs with luminosity above 1040ergs s-1 are found in both starburst galaxies and in thehalos of early-type galaxies.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/1125

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

Chandra observations of five ultraluminous X-ray sources in nearby galaxies
We report the results of a programme of dual-epoch Chandra ACIS-Sobservations of five ultraluminous X-ray sources (ULXs) in nearby spiralgalaxies. All five ULXs are detected as unresolved, point-like X-raysources by Chandra, though two have faded below the 1039 ergs-1 luminosity threshold used to first designate thesesources as ULXs. Using this same criterion, we detect three further ULXswithin the imaged regions of the galaxies. The ULXs appear to be relatedto the star-forming regions of the galaxies, indicating that even innormal spiral galaxies the ULX population is predominantly associatedwith young stellar populations. A detailed study of the Chandra ACIS-Sspectra of six of the ULXs shows that five are better described by apower-law continuum than a multicolour disc blackbody model, thoughthere is evidence for additional very soft components to two of thepower-law continua. The measured photon indices in four out of fivecases are consistent with the low/hard state in black hole binaries,contrary to the suggestion that power-law-dominated spectra of ULXsoriginate in the very high state. A simple interpretation of this isthat we are observing accretion on to intermediate-mass black holes,though we might also be observing a spectral state unique to very highmass accretion rates in stellar-mass black hole systems. Short-term fluxvariability is only detected in one of two epochs for two of the ULXs,with the lack of this characteristic arguing that the X-ray emission ofthis sample of ULXs is not dominated by relativistically beamed jets.The observational characteristics of this small sample suggest that ULXsare a distinctly heterogeneous source class.

A New Nonparametric Approach to Galaxy Morphological Classification
We present two new nonparametric methods for quantifying galaxymorphology: the relative distribution of the galaxy pixel flux values(the Gini coefficient or G) and the second-order moment of the brightest20% of the galaxy's flux (M20). We test the robustness of Gand M20 to decreasing signal-to-noise ratio (S/N) and spatialresolution and find that both measures are reliable to within 10% forimages with average S/N per pixel greater than 2 and resolutions betterthan 1000 and 500 pc, respectively. We have measured G andM20, as well as concentration (C), asymmetry (A), andclumpiness (S) in the rest-frame near-ultraviolet/optical wavelengthsfor 148 bright local ``normal'' Hubble-type galaxies (E-Sd) galaxies, 22dwarf irregulars, and 73 0.05

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Deprojecting spiral galaxies using Fourier analysis. Application to the Frei sample
We present two methods that can be used to deproject spirals, based onFourier analysis of their images, and discuss their potential andrestrictions. Our methods perform particularly well for galaxies moreinclined than 50° or for non-barred galaxies moreinclined than 35°. They are fast and straightforward touse, and thus ideal for large samples of galaxies. Moreover, they arevery robust for low resolutions and thus are appropriate for samples ofcosmological interest. The relevant software is available from us uponrequest. We use these methods to determine the values of the positionand inclination angles for a sample of 79 spiral galaxies contained inthe Frei et al. (\cite{frei96}) sample. We compare our results with thevalues found in the literature, based on other methods. We findstatistically very good agreementTable 7 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/849

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

First results from the HI Jodrell All Sky Survey: inclination-dependent selection effects in a 21-cm blind survey
Details are presented of the HI Jodrell All Sky Survey (HIJASS). HIJASSis a blind neutral hydrogen (HI) survey of the northern sky (δ> 22°), being conducted using the multibeam receiver on theLovell Telescope (full width at half-maximum beamwidth 12 arcmin) atJodrell Bank. HIJASS covers the velocity range -3500 to 10 000 kms-1, with a velocity resolution of 18.1 km s-1 andspatial positional accuracy of ~2.5 arcmin. Thus far about 1115deg2 of sky have been surveyed. The average rms noise duringthe early part of the survey was around 16 mJy beam-1.Following the first phase of the Lovell Telescope upgrade (in 2001), therms noise is now around 13 mJy beam-1. We describe themethods of detecting galaxies within the HIJASS data and of measuringtheir HI parameters. The properties of the resulting HI-selected sampleof galaxies are described. Of the 222 sources so far confirmed, 170 (77per cent) are clearly associated with a previously catalogued galaxy. Afurther 23 sources (10 per cent) lie close (within 6 arcmin) to apreviously catalogued galaxy for which no previous redshift exists. Afurther 29 sources (13 per cent) do not appear to be associated with anypreviously catalogued galaxy. The distributions of peak flux, integratedflux, HI mass and cz are discussed. We show, using the HIJASS data, thatHI self-absorption is a significant, but often overlooked, effect ingalaxies with large inclination angles to the line of sight. Properlyaccounting for it could increase the derived HI mass density of thelocal Universe by at least 25 per cent. The effect that this will haveon the shape of the HI mass function will depend on how self-absorptionaffects galaxies of different morphological types and HI masses. We alsoshow that galaxies with small inclinations to the line of sight may alsobe excluded from HI-selected samples, since many such galaxies will haveobserved velocity widths that are too narrow for them to bedistinguished from narrow-band radio-frequency interference. This effectwill become progressively more serious for galaxies with smallerintrinsic velocity widths. If, as we might expect, galaxies with smallerintrinsic velocity widths have smaller HI masses, then compensating forthis effect could significantly steepen the faint-end slope of thederived HI mass function.

Photometry of the Low-Luminosity Spiral Galaxy NGC4136
Multicolor BVRI surface photometry of the low-luminosity (M_V = -18 mag)spiral galaxy NGC4136 is presented. The photometric parameters of itscomponents and the color distribution over the galactic disk areestimated. The color indices and the corresponding effective ages aredetermined for the brightest star-forming regions. The disk-to-dark halomass ratio is derived from the measured rotation curve of the galaxy.The disk mass dominates within the optical boundaries of the galaxy, soits disk can be considered as a self-gravitating system.

The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories
A major problem in extragalactic astronomy is the inability todistinguish in a robust, physical, and model-independent way how galaxypopulations are physically related to each other and to their formationhistories. A similar, but distinct, and also long-standing question iswhether the structural appearances of galaxies, as seen through theirstellar light distributions, contain enough physical information tooffer this classification. We argue through the use of 240 images ofnearby galaxies that three model-independent parameters measured on asingle galaxy image reveal its major ongoing and past formation modesand can be used as a robust classification system. These parametersquantitatively measure: the concentration (C), asymmetry (A), andclumpiness (S) of a galaxy's stellar light distribution. When combinedinto a three-dimensional ``CAS'' volume all major classes of galaxies invarious phases of evolution are cleanly distinguished. We argue thatthese three parameters correlate with important modes of galaxyevolution: star formation and major merging activity. This is arguedthrough the strong correlation of Hα equivalent width andbroadband colors with the clumpiness parameter S, the uniquely largeasymmetries of 66 galaxies undergoing mergers, and the correlation ofbulge to total light ratios, and stellar masses, with the concentrationindex. As an obvious goal is to use this system at high redshifts totrace evolution, we demonstrate that these parameters can be measured,within a reasonable and quantifiable uncertainty with available data outto z~3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Fieldimages.

Galaxy classification using fractal signature
Fractal geometry is becoming increasingly important in the study ofimage characteristics. For recognition of regions and objects in naturalscenes, there is always a need for features that are invariant and theyprovide a good set of descriptive values for the region. There are manyfractal features that can be generated from an image. In this paper,fractal signatures of nearby galaxies are studied with the aim ofclassifying them. The fractal signature over a range of scales proved tobe an efficient feature set with good discriminating power. Classifierswere designed using nearest neighbour method and neural networktechnique. Using the nearest distance approach, classification rate wasfound to be 92%. By the neural network method it has been found toincrease to 95%.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Morphological classification of the OSU Bright Spiral Galaxy Survey
To quantify the distribution of bar shapes in spiral galaxies, we haveanalysed 113 H-band and 89 B-band galaxy images from the Ohio StateUniversity Bright Spiral Galaxy Survey. Parameters measuring bar shapeand position along the Hubble sequence were obtained in each waveband.Evidence was found for a bimodality in the distribution of bar shape,implying that barred and unbarred galaxies are not just the extrema of asingle distribution, and that any evolution between these two statesmust occur on a rapid time-scale. Objective bar shapes measured in theH-band were found to be more closely related to visual classificationsthan B-band bar strengths, as the B-band images are somewhat compromisedby localized star formation, especially in later type systems. Galaxieswere found to be more centrally concentrated in the infrared. Later typegalaxies showed greater asymmetry in the optical than the infrared,presumably again owing to localized star formation, but on average thebar shapes in the two bands were found to be the same.

A Search for Active Galactic Nuclei in Sc Galaxies with H II Spectra
We have searched for nuclear radio emission from a statisticallycomplete sample of 40 Sc galaxies within 30 Mpc that are opticallyclassified as star-forming objects, in order to determine whether weakactive galactic nuclei might be present. Only three nuclear radiosources were detected, in NGC 864, NGC 4123, and NGC 4535. Thesegalaxies have peak 6 cm radio powers of ~1020 WHz-1 at arcsecond resolution, while upper limits of thenondetected galaxies typically range from 1018.4 to1020 W Hz-1. The three nuclear radio sources areall resolved and appear to have diffuse morphologies, with linear sizesof ~300 pc. This strongly indicates that circumnuclear star formationhas been detected in these three H II galaxies. Comparisons withprevious 20 cm Very Large Array (VLA) results for the detected galaxiesshow that the extended nuclear radio emission has a flat spectrum in twoobjects and is almost certainly generated by thermal emission from gasionized by young stars in the centers of those galaxies. The 6 cm radiopowers are comparable to predictions for thermal emission that are basedon the nuclear Hα luminosities and imply nuclear star formationrates of 0.08-0.8 Msolar yr-1, while thelow-resolution NRAO VLA Sky Survey implies galaxy-wide star formationrates of 0.3-1.0 Msolar yr-1 in stars above 5Msolar. In a few of the undetected galaxies, the upper limitsto the radio power are lower than predicted from the Hαluminosity, possibly because of overresolution of central star-formingregions. Although the presence of active nuclei powered by massive blackholes cannot be definitively ruled out, the present results suggest thatthey are likely to be rare in these late-type galaxies with H IIspectra.

Identification and classification of galaxies using a biologically-inspired neutral network
Recognition/Classification of galaxies is an important issue in thelarge-scale study of the Universe; it is not a simple task. According toestimates computed from the Hubble Deep Field (HDF), astronomers predictthat the universe may potentially contain over 100 billion galaxies.Several techniques have been reported for the classification ofgalaxies. Parallel developments in the field of neural networks havecome to a stage that they can participate well in the recognition ofobjects. Recently, the Pulse-Coupled Neural Network (PCNN) has beenshown to be useful for image pre-processing. In this paper, we present anovel way to identify optical galaxies by presenting the images of thegalaxies to a hierarchical neural network involving two PCNNs. The imageis presented to the network to generate binary barcodes (one periteration) of the galaxies; the barcodes are unique to the inputgalactic image. In the current study, we exploit this property toidentify optical galaxies by comparing the signatures (binary barcode)from a corresponding database.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

An Infrared Space Observatory Atlas of Bright Spiral Galaxies
In this first paper in a series we present an atlas of infrared imagesand photometry from 1.2 to 180 μm for a sample of bright spiralgalaxies. The atlas galaxies are an optically selected,magnitude-limited sample of 77 spiral and S0 galaxies chosen from theRevised Shapley-Ames Catalog (RSA). The sample is a representativesample of spiral galaxies and includes Seyfert galaxies, LINERs,interacting galaxies, and peculiar galaxies. Using the Infrared SpaceObservatory (ISO), we have obtained 12 μm images and photometry at60, 100, and 180 μm for the galaxies. In addition to its imagingcapabilities, ISO provides substantially better angular resolution thanis available in the IRAS survey, and this permits discrimination betweeninfrared activity in the central regions and global infrared emission inthe disks of these galaxies. These ISO data have been supplemented withJHK imaging using ground-based telescopes. The atlas includes 2 and 12μm images. Following an analysis of the properties of the galaxies,we have compared the mid-infrared and far-infrared ISO photometry withIRAS photometry. The systematic differences we find between the IRASFaint Source Catalog and ISO measurements are directly related to thespatial extent of the ISO fluxes, and we discuss the reliability of IRASFaint Source Catalog total flux densities and flux ratios for nearbygalaxies. In our analysis of the 12 μm morphological features we findthat most but not all galaxies have bright nuclear emission. We find 12μm structures such as rings, spiral arm fragments, knotted spiralarms, and bright sources in the disks that are sometimes brighter thanthe nuclei at mid-infrared wavelengths. These features, which arepresumably associated with extranuclear star formation, are common inthe disks of Sb and later galaxies but are relatively unimportant inS0-Sab galaxies. Based on observations with the Infrared SpaceObservatory (ISO), an ESA project with instruments funded by ESA MemberStates (especially the PI countries: France, Germany, Netherlands, andUnited Kingdom) and with the participation of ISAS and NASA.

The UZC-SSRS2 Group Catalog
We apply a friends-of-friends algorithm to the combined Updated ZwickyCatalog and Southern Sky Redshift Survey to construct a catalog of 1168groups of galaxies; 411 of these groups have five or more members withinthe redshift survey. The group catalog covers 4.69 sr, and all groupsexceed the number density contrast threshold, δρ/ρ=80. Wedemonstrate that the groups catalog is homogeneous across the twounderlying redshift surveys; the catalog of groups and their membersthus provides a basis for other statistical studies of the large-scaledistribution of groups and their physical properties. The medianphysical properties of the groups are similar to those for groupsderived from independent surveys, including the ESO Key Programme andthe Las Campanas Redshift Survey. We include tables of groups and theirmembers.

The Visibility of Galactic Bars and Spiral Structure at High Redshifts
We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.

Kinematics of AWM and MKW Poor Clusters
We have measured 1365 redshifts to a limiting magnitude of R~15.5 in 15AWM/MKW clusters and have collected another 203 from the literature inMKW 4s, MKW 2, and MKW 2s. In AWM 7 we have extended the redshift sampleto R~18 in the cluster center. We have identified 704 cluster members in17 clusters; 201 are newly identified. We summarize the kinematics anddistributions of the cluster galaxies and provide an initial discussionof substructure, mass and luminosity segregation, spectral segregation,velocity-dispersion profiles, and the relation of the central galaxy toglobal cluster properties. We compute optical mass estimates, which wecompare with X-ray mass determinations from the literature. The clustersare in a variety of dynamical states, reflected in the three classes ofbehavior of the velocity-dispersion profile in the core: rising,falling, or flat/ambiguous. The velocity dispersion of the emission-linegalaxy population significantly exceeds that of the absorption-linegalaxies in almost all of the clusters, and the presence ofemission-line galaxies at small projected radii suggests continuinginfall of galaxies onto the clusters. The presence of a cD galaxy doesnot constrain the global cluster properties; these clusters are similarto other poor clusters that contain no cD. We use the similarity of thevelocity-dispersion profiles at small radii and the cD-like galaxies'internal velocity dispersions to argue that cD formation is a localphenomenon. Our sample establishes an empirical observational baselineof poor clusters for comparison with simulations of similar systems.Observations reported in this paper were obtained at the Multiple MirrorTelescope Observatory, a facility operated jointly by the University ofArizona and the Smithsonian Institution; at the Whipple Observatory, afacility operated jointly by the Smithsonian Astrophysical Observatoryand Harvard University; and at the WIYN Observatory, a joint facility ofthe University of Wisconsin-Madison, Indiana University, YaleUniversity, and the National Optical Astronomy Observatories.

Supernovae in isolated galaxies, in pairs and in groups of galaxies
In order to investigate the influence of environment on supernova (SN)production, we have performed a statistical investigation of the SNediscovered in isolated galaxies, in pairs and in groups of galaxies. 22SNe in 18 isolated galaxies, 48 SNe in 40 galaxy members of 37 pairs and211 SNe in 170 galaxy members of 116 groups have been selected andstudied. We found that the radial distributions of core-collapse SNe ingalaxies located in different environments are similar, and consistentwith those reported by Bartunov, Makarova & Tsvetkov. SNe discoveredin pairs do not favour a particular direction with respect to thecompanion galaxy. Also, the azimuthal distributions inside the hostmembers of galaxy groups are consistent with being isotropics. The factthat SNe are more frequent in the brighter components of the pairs andgroups is expected from the dependence of the SN rates on the galaxyluminosity. There is an indication that the SN rate is higher in galaxypairs compared with that in groups. This can be related to the enhancedstar formation rate in strongly interacting systems. It is concludedthat, with the possible exception of strongly interacting systems, theparent galaxy environment has no direct influence on SN production.

Statistical Properties of Circumnuclear H II Regions in Nearby Galaxies
We analyze the statistical properties of the circumnuclear H II regionsof a sample of 52 nearby galaxies (v<1000 km s-1) fromarchival HST/NICMOS H-band and Paα (1.87 μm) observations atunprecedented spatial resolutions of between 1 and 30 pc. We catalog HII regions from the continuum-subtracted Paα images and find H IIregions in the central regions of most galaxies, and more than a hundredin each of eight galaxies. In contrast to disk H II regions, thephysical properties (luminosity and size) of individual circumnuclear HII regions do not vary strongly with the morphological type of the hostgalaxy, nor does the number of circumnuclear H II regions per unit area.The Hα luminosity within the central kiloparsec, as derived from HII region emission, is significantly enhanced in early-type (S0/a-Sb)galaxies. We find evidence that bars increase the circumnuclear starformation, presumably by funneling gas from the disk toward the nucleus.Barred galaxies exhibit enhanced luminosities of the brightest H IIregion, the central kiloparsec Hα luminosities (an effect mostlydue to the early-type galaxies in our sample), and the star formationrates per unit stellar mass (which could also be understood as theintegral equivalent widths of Paα) over the central kiloparsecwith respect to nonbarred galaxies. We fit the luminosity functions(LFs) and diameter distributions of the circumnuclear H II regions ineight galaxies where we can catalog enough H II regions to do so in ameaningful way. We use power laws and find that the fitted slopes of theH II region LF are exactly in the previously found ranges and evenconfirm a trend with steeper slopes in galaxies of earlier morphologicaltype. This implies that the physical processes giving rise to enhancedstar formation in the circumnuclear regions of galaxies must be similarto those in disks. Based on observations with the NASA/ESA Hubble SpaceTelescope, obtained from the data archive at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.

Multiwavelength study of the nuclei of a volume-limited sample of galaxies - I. X-ray observations
We discuss ROSAT HRI X-ray observations of 33 very nearby galaxies,sensitive to X-ray sources down to a luminosity of approximately1038ergs-1. The galaxies are selected from acomplete, volume-limited sample of 46 galaxies with LX ∝L1.5host d < 7 MPc for which we have extensivemultiwavelength data. For an almost complete subsample withMB < -14 MB (29/31 objects) we have HRI images.Contour maps and source lists are presented within the central region ofeach galaxy, together with nuclear upper limits where no nuclear sourcewas detected. Nuclear X-ray sources are found to be very common,occurring in ~35per cent of the sample. Nuclear X-ray luminosity isstatistically connected to host galaxy luminosity - there is not a tightcorrelation, but the probability of a nuclear source being detectedincreases strongly with galaxy luminosity, and the distribution ofnuclear luminosities seems to show an upper envelope that is roughlyproportional to galaxy luminosity. While these sources do seem to be agenuinely nuclear phenomenon rather than nuclear examples of the generalX-ray source population, it is far from obvious that they are miniatureSeyfert nuclei. The more luminous nuclei are very often spatiallyextended, and Hii region nuclei are detected just as often as LINERs.Finally, we also note the presence of fairly common superluminous X-raysources in the off-nuclear population - out of 29 galaxies we find ninesources with a luminosity greater than 1039ergs-1.These show no particular preference for more luminous galaxies. One isalready known to be a multiple SNR system, but most have no obviousoptical counterpart and their nature remains a mystery.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Coma Berenices
Right ascension:12h09m17.80s
Declination:+29°55'41.0"
Aparent dimensions:2.951′ × 2.754′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4136
HYPERLEDA-IPGC 38618

→ Request more catalogs and designations from VizieR