Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 5020


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients
The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.

The distribution of atomic gas and dust in nearby galaxies - II. Further matched-resolution Very Large Array H I and SCUBA 850-μm images
We present Very Large Array (VLA) C-array 21-cm HI images of galaxiesfrom the SCUBA Local Universe Galaxy Survey which have been observed at850 μm with the James Clerk Maxwell Telescope. Matched-resolution (~25 arcsec) HI images of 17 galaxies are presented and compared with850-μm images. HI or 850-μm images of an additional six galaxieswhich were detected at only one wavelength are presented. Additionally,lower resolution H I observations of nine galaxies are presented. Theobservations of these galaxies, along with results previously presented,do not show any obvious trends in the HI/dust or H2/dust massratios with morphological type.

Properties of isolated disk galaxies
We present a new sample of northern isolated galaxies, which are definedby the physical criterion that they were not affected by other galaxiesin their evolution during the last few Gyr. To find them we used thelogarithmic ratio, f, between inner and tidal forces acting upon thecandidate galaxy by a possible perturber. The analysis of thedistribution of the f-values for the galaxies in the Coma cluster leadus to adopt the criterion f ≤ -4.5 for isolated galaxies. Thecandidates were chosen from the CfA catalog of galaxies within thevolume defined by cz ≤5000 km s-1, galactic latitudehigher than 40o and declination ≥-2.5o. Theselection of the sample, based on redshift values (when available),magnitudes and sizes of the candidate galaxies and possible perturberspresent in the same field is discussed. The final list of selectedisolated galaxies includes 203 objects from the initial 1706. The listcontains only truly isolated galaxies in the sense defined, but it is byno means complete, since all the galaxies with possible companions underthe f-criterion but with unknown redshift were discarded. We alsoselected a sample of perturbed galaxies comprised of all the diskgalaxies from the initial list with companions (with known redshift)satisfying f ≥ -2 and \Delta(cz) ≤500 km s-1; a totalof 130 objects. The statistical comparison of both samples showssignificant differences in morphology, sizes, masses, luminosities andcolor indices. Confirming previous results, we found that late spiral,Sc-type galaxies are, in particular, more frequent among isolatedgalaxies, whereas Lenticular galaxies are more abundant among perturbedgalaxies. Isolated systems appear to be smaller, less luminous and bluerthan interacting objects. We also found that bars are twice as frequentamong perturbed galaxies compared to isolated galaxies, in particularfor early Spirals and Lenticulars. The perturbed galaxies have higherLFIR/LB and Mmol/LB ratios,but the atomic gas content is similar for the two samples. The analysisof the luminosity-size and mass-luminosity relations shows similartrends for both families, the main difference being the almost totalabsence of big, bright and massive galaxies among the family of isolatedsystems, together with the almost total absence of small, faint and lowmass galaxies among the perturbed systems. All these aspects indicatethat the evolution induced by interactions with neighbors would proceedfrom late, small, faint and low mass Spirals to earlier, bigger, moreluminous and more massive spiral and lenticular galaxies, producing atthe same time a larger fraction of barred galaxies but preserving thesame relations between global parameters. The properties we found forour sample of isolated galaxies appear similar to those of high redshiftgalaxies, suggesting that the present-day isolated galaxies could bequietly evolved, unused building blocks surviving in low densityenvironments.Tables \ref{t1} and \ref{t2} are only available in electronic form athttp://www.edpsciences.org

Dust masses and star formation in bright IRAS galaxies. Application of a physical model for the interpretation of FIR observations
We address the problem of modeling the far-infrared (FIR) spectrum andderiving the star-formation rate (SFR) and the dust mass of spiralgalaxies. We use the realistic physical model of Popescu et al.(\cite{popescu}) to describe the overall ultra-violet (UV), optical andFIR spectral energy distribution (SED) of a spiral galaxy. The modeltakes into account the 3-dimensional old and young stellar distributionsin the bulge and the disk of a galaxy, together with the dust geometry.The geometrical characteristics of the galaxy and the intrinsic opticaland near-infrared spectra are determined by the galaxy's observed K-bandphotometry. The UV part of the spectrum is assumed to be proportional tothe SFR through the use of population synthesis models. By solving theradiative transfer equation, we are able to determine the absorbedenergy, the dust temperature and the resulting FIR spectrum. The modelhas only three free parameters: SFR, dust mass, and the fraction of theUV radiation which is absorbed locally by dense dust in the HII regions.Using this model, we are able to fit well the FIR spectra of 62 brightIRAS galaxies from the ``SCUBA Local Universe Galaxy Survey" of Dunne etal. (\cite{dunne1}). As a result, we are able to determine, amongothers, their SFR and dust mass. We find that, on average, the SFR (inabsolute units), the star-formation efficiency, the SFR surface densityand the ratio of FIR luminosity over the total intrinsic luminosity, arelarger than the respective values of typical spiral galaxies of the samemorphological type. We also find that the mean gas-to-dust mass ratio isclose to the Galactic value, while the average central face-on opticaldepth of these galaxies in the V band is 2.3. Finally, we find a strongcorrelation between SFR or dust mass and observed FIR quantities liketotal FIR luminosity or FIR luminosity at 100 and 850 μm. Thesecorrelations yield well-defined relations, which can be used todetermine a spiral galaxy's SFR and dust-mass content from FIRobservations.

Fourier Analysis of a Spiral Galaxies Sample: Determination of Kinematic and Morphological Parameters
We present partial results of a larger work searching for corotations ina large sample of grand design spiral galaxies. We have searched forcorotation resonances (CRs) in five northern spiral galaxies: NGC 266,NGC 1520, NGC 1530, NGC 2543, and NGC 7479. We can reject some detectedCRs values in those galaxies when we perceive dust lanes in bars, we canasociate the (CR) with local features or simply there is a lowsignal-noise in these regions. We have detected two CRs in NGC 2543 andNGC 7479. Using the 2D Fourier technique we have determined the mainspectrum components for the spiral pattern and the pitch angles of thespiral arms for 19 galaxies of our sample. In all the galaxies the m=2mode is the most important one. However, we have detected the presenceof strong m=3 modes in five galaxies of our sample (NGC 151, NGC 1241,NGC 4254, NGC 5427, and NGC 7753). We did not find correlation betweenthe main pitch angle of the galaxies and the morphological type.

CO Molecular Gas in Infrared-luminous Galaxies
We present the first statistical survey of the properties of the12CO(1-0) and 12CO(3-2) line emission from thenuclei of a nearly complete subsample of 60 infrared (IR) luminousgalaxies selected from SCUBA Local Universe Galaxy Survey (SLUGS). Thissubsample is flux limited at S60μm>=5.24 Jy with far-IR(FIR) luminosities mostly at LFIR>1010Lsolar. We compare the emission line strengths of12CO(1-0) and (3-2) transitions at a common resolution of~15". The measured 12CO(3-2) to (1-0) line intensity ratiosr31 vary from 0.22 to 1.72, with a mean value of 0.66 for thesources observed, indicating a large spread of the degree of excitationof CO in the sample. These CO data, together with a wide range of dataat different wavelengths obtained from the literature, allow us to studythe relationship between the CO excitation conditions and the physicalproperties of gas/dust and star formation in the central regions ofgalaxies. Our analysis shows that there is a nonlinear relation betweenCO and FIR luminosities, such that their ratioLCO/LFIR decreases linearly with increasingLFIR. This behavior was found to be consistent with theSchmidt law relating star formation rate to molecular gas content, withan index N=1.4+/-0.3. We also find a possible dependence of the degreeof CO gas excitation on the efficiency of star-forming activity. Usingthe large velocity gradient (LVG) approximation to model the observeddata, we investigate the CO-to-H2 conversion factor X for theSLUGS sample. The results show that the mean value of X for the SLUGSsample is lower by a factor of 10 compared to the conventional valuederived for the Galaxy, if we assume the abundance of CO relative toH2, ZCO=10-4. For a subset of 12galaxies with H I maps, we derive a mean total face-on surface densityof H2+HI of about 42 Msolar pc-2 withinabout 2 kpc of the nucleus. This value is intermediate between that ingalaxies like our own and those with strong star formation.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Mass-to-light ratios from the fundamental plane of spiral galaxy discs
The best-fitting two-dimensional plane within the three-dimensionalspace of spiral galaxy disc observables (rotational velocityvrot, central disc surface brightnessμ0=-2.5logI0 and disc scalelength h) has beenconstructed. Applying the three-dimensional bisector method ofregression analysis to a sample of ~100 spiral galaxy discs that spanmore than 4magarcsec-2 in central disc surface brightnessyields vrot\proptoI0.50\pm0.050\,h0.77\pm 0.07 (B band)and vrot\proptoI0.43\pm0.040\,h0.69\pm 0.07 (R band).Contrary to popular belief, these results suggest that in the B band,the dynamical mass-to-light ratio (within four disc scalelengths) islargely independent of the surface brightness, varying as I0.00\pm0.100\,h0.54\pm 0.14. Consistentresults were obtained when the range of the analysis was truncated byexcluding the low-surface-brightness galaxies. Previous claims thatM/LBvaries withI-1/20,Bareshown to be misleading and/or caused by galaxy selection effects - notall low-surface-brightness disc galaxies are dark matter dominated. Thesituation is, however, different in the near-infrared whereLK'~v4 and M/LK' is shown to vary asI-1/20,K\prime. Theoretical studies ofspiral galaxy discs should therefore not assume a constant M/L ratiowithin any given passband. The B-band dynamical mass-to-light ratio(within four disc scalelengths) has no obvious correlation with (B-R)disc colour, while in the K' band it varies as -1.25+/-0.28(B-R).Combining the present observational data with recent galaxy modelpredictions implies that the logarithm of the stellar-to-dynamical massratio is not a constant value, but increases as discs become redder,varying as 1.70+/-0.28(B-R).

Supernovae in isolated galaxies, in pairs and in groups of galaxies
In order to investigate the influence of environment on supernova (SN)production, we have performed a statistical investigation of the SNediscovered in isolated galaxies, in pairs and in groups of galaxies. 22SNe in 18 isolated galaxies, 48 SNe in 40 galaxy members of 37 pairs and211 SNe in 170 galaxy members of 116 groups have been selected andstudied. We found that the radial distributions of core-collapse SNe ingalaxies located in different environments are similar, and consistentwith those reported by Bartunov, Makarova & Tsvetkov. SNe discoveredin pairs do not favour a particular direction with respect to thecompanion galaxy. Also, the azimuthal distributions inside the hostmembers of galaxy groups are consistent with being isotropics. The factthat SNe are more frequent in the brighter components of the pairs andgroups is expected from the dependence of the SN rates on the galaxyluminosity. There is an indication that the SN rate is higher in galaxypairs compared with that in groups. This can be related to the enhancedstar formation rate in strongly interacting systems. It is concludedthat, with the possible exception of strongly interacting systems, theparent galaxy environment has no direct influence on SN production.

An Investigation into the Prominence of Spiral Galaxy Bulges
From a diameter-limited sample of 86 low-inclination (face-on) spiralgalaxies, the bulge-to-disk size and luminosity ratios and otherquantitative measurements for the prominence of the bulge are derived.The bulge and disk parameters have been estimated using aseeing-convolved Sérsic r1/n bulge and aseeing-convolved exponential disk that were fitted to the optical (B, R,and I) and near-infrared (K) galaxy light profiles. In general,early-type spiral galaxy bulges have Sérsic values of n>1, andlate-type spiral galaxy bulges have values of n<1. In the B band,only eight galaxies have a bulge shape parameter n consistent with theexponential value 1, and only five galaxies do in the K band. Use of theexponential bulge model is shown to restrict the range ofre/h and B/D values by more than a factor of 2. Applicationof the r1/n bulge models, unlike exponential bulge models,results in a larger mean re/h ratio for the early-type spiralgalaxies than for the late-type spiral galaxies, although this result isshown not to be statistically significant. The mean B/D luminosity ratiois, however, significantly larger (>3 σ) for the early-typespirals than for the late-type spirals. Two new parameters areintroduced to measure the prominence of the bulge. The first is thedifference between the central surface brightness of the galaxy and thesurface brightness level at which the bulge and disk contribute equally.The other test uses the radius at which the contribution from the diskand bulge light are equal, normalized for the effect of intrinsicallydifferent galaxy sizes. Both of these parameters reveal that theearly-type spiral galaxies ``appear'' to have significantly (more than 2σ in all passbands) bigger and brighter bulges than late-typespiral galaxies. This apparent contradiction with the re/hvalues can be explained with an iceberg-like scenario, in which thebulges in late-type spiral galaxies are relatively submerged in theirdisk. This can be achieved by varying the relative stellar density whilemaintaining the same effective bulge-to-disk ratio. The B/D luminosityratio and the concentration index C31, in agreement with paststudies, are positively correlated and decrease as one moves along thespiral Hubble sequence toward later spiral galaxy types, although forgalaxies with large extended bulges the concentration index no longertraces the B/D luminosity ratio in a one-to-one fashion. A strong(Spearman's rank-order correlation coefficient, rs=0.80) andhighly significant positive correlation exists between the shape, n, ofthe bulge light profile and the bulge-to-disk luminosity ratio. Theabsolute bulge magnitude-logn diagram is used as a diagnostic tool forcomparative studies with dwarf elliptical and ordinary ellipticalgalaxies. At least in the B band these objects occupy distinctlydifferent regions of this parameter space. While the dwarf ellipticalgalaxies appear to be the faint extension to the brighter ellipticalgalaxies, the bulges of spiral galaxies do not; for a given luminositythey have a noticeably smaller shape parameter and hence a more dramaticdecline of stellar density at large radii.

The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions
This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The Canarias Database of Nearby Type II Supernovae
Our aim is to present an atlas containing 35 low-resolution spectra thatcorrespond to 19 Type II supernovae. These spectra cover differentphases of postmaximum supernova evolution, ranging from ~2 weeks to>~1 yr after maximum brightness. The Canarias Database of Nearby TypeII Supernovae contains spectra obtained from two different programs: thefirst, the ``Supernova Monitoring Project,'' was carried out from 1990April to 1992 July; the second takes advantage of the ORM Service Timefacility and is currently active. In this paper we present the firstresults, mainly compiled from the Supernova Monitoring Project. Based onobservations made with the 2.5 m Isaac Newton Telescope and the 4.2 mWilliam Herschel Telescope operated on La Palma by the Isaac NewtonGroups of Telescopes at Observatorio del Roque de los Muchachos of theInstituto de Astrofísica de Canarias.

The QDOT all-sky IRAS galaxy redshift survey
We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The Supernova Rate in Starburst Galaxies
We conducted an optical CCD search for supernovae in a sample of 142bright [m(B) <= 16 mag], nearby (z<=0.03) starburst galaxies overthe period 1988 December to 1991 June, to a limiting R-band magnitude of18. Five supernovae were found, in all cases outside the host galaxy'snucleus. We determine supernova rates (in supernova units or SNU) in theextranuclear regions to be 0.7 h^2 SNU for Type Ia, 0.7 h^2 SNU for TypeIb/c, and ~0.6 h^2 SNU for Type II, with large uncertainties but upperlimits of 2.2 h^2, 2.5 h^2, and 1.7 h^2 SNU, respectively. These ratesare similar to those measured in ``normal'' galaxies. We found noevidence for a supernova-induced brightening in any galactic nucleusand, with a few reasonable assumptions, can place upper limits of 9 h^2,12 h^2, and 7 h^2 SNU on the rates of unobscured supernovae Types Ia,Ib/c, and II, respectively, inside the nuclei.

Catalogue of HI maps of galaxies. I.
A catalogue is presented of galaxies having large-scale observations inthe HI line. This catalogue collects from the literature the informationthat characterizes the observations in the 21-cm line and the way thatthese data were presented by means of maps, graphics and tables, forshowing the distribution and kinematics of the gas. It containsfurthermore a measure of the HI extension that is detected at the levelof the maximum sensitivity reached in the observations. This catalogueis intended as a guide for references on the HI maps published in theliterature from 1953 to 1995 and is the basis for the analysis of thedata presented in Paper II. The catalogue is only available inelectronic form at the CDS via anonymous ftp 130.79.128.5 orhttp://cdsweb.u-strasbg.fr/Abstract.html

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

Gas Mass Fractions and the Evolution of Spiral Galaxies
We show that the gas mass fraction of spiral galaxies is stronglycorrelated with luminosity and surface brightness. It is not correlatedwith linear size. Gas fraction varies with luminosity and surfacebrightness at the same rate, indicating evolution at fixed size. Dimgalaxies are clearly less evolved than bright ones, having consumed only~ \frac {1}{2} of their gas. This resolves the gas consumption paradox,since there exist many galaxies with large gas reservoirs. Thesegas-rich galaxies must have formed the bulk of their stellar populationsin the last half of a Hubble time. The existence of such immaturegalaxies at z = 0 indicates that either galaxy formation is a lengthy oreven ongoing process, or the onset of significant star formation can bedelayed for arbitrary periods in tenuous gas disks.

Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. II. A two-dimensional method to determine bulge and disk parameters.
In this Paper I present a new two-dimensional decomposition technique,which models the surface photometry of a galaxy with an exponentiallight profile for both bulge and disk and, when necessary, with aFreeman bar. The new technique was tested for systematic errors on bothartificial and real data and compared with widely used one-dimensionaldecomposition techniques, where the luminosity profile of the galaxy isused. The comparisons indicate that a decomposition of thetwo-dimensional image of the galaxy with an exponential light profilefor both bulge and disk yields the most reproducible and representativebulge and disk parameters. An extensive error analysis was made todetermine the reliability of the model parameters. If the model with anexponential bulge profile is a reasonable description of a galaxy, themaximum errors in the derived model parameters are of order 20%. Theuncertainties in the model parameters will increase, if the exponentialbulge function is replaced by other often used bulge functions as the deVaucouleurs law. All decomposition methods were applied to the opticaland near-infrared data set presented by de Jong & van der Kruit(1994), which comprises 86 galaxies in six passbands.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

Disc galaxies with multiple triaxial structures. I. BVRI and Hα surface photometry.
We present a BVRI survey of 36 galaxies selected as candidates forhaving a misaligned secondary bar or a triaxial bulge inside the primarybar. Fifteen galaxies have also been observed in Hα. A positivedetection of more than one triaxial structure has been found in 22galaxies shared out as follows: 13 double-barred galaxies, 3triple-barred galaxies, 3 double-barred galaxies with an additionalstructure with twisted isophotes, and 3 galaxies with a bar and astructure with twisted isophotes. Triaxial deformation(s) have beenfound in 6 galaxies classified as unbarred in RC3. The number of Seyfertnuclei amongst double-barred systems is high (6 over 13).

Distribution of supernovae relative to spiral arms and H II regions
We have studied the association of supernovae in spiral galaxies withsites of recent stars formation -- sprial arms and H II regions. It isshown that supernovae (SNe) of Types Ia, Ib, and II exhibitconcentration to spiral arms and their distributions over the distanceto the nearest spiral arm do not differ significantly. This result isconfirmed by a Kolmogorov-Smirnov test comparison with the distancedistributions, expected if SNe are distributed randomly inside the modelgalaxy. SNe of types Ib and II show a strong concentration towards H IIregions, while distribution of SNe Ia can be explained by chancesuperposition. All studied distributions of SNe Ib and II show strikingsimilarity, which suggests that their progenitors are massive stars withsimilar ages and initial masses. The association of SNe Ia with spiralarms suggests that their progenitors in spiral galaxies are likely to beintermediate mass stars.

A catalog of recent supernovae
A listing is given of all supernovae discovered between 1 Jan 1989 and 1Apr 1993. The data show no evidence for a significant dependence of thediscovery probability of supernovae on parent galaxy inclination to theline of sight. If no inclination corrections need to be applied then thesupernova rates in spirals are only about half as large as previouslybelieved. The mean linear separation of supernovae of Type II (SNe II)from the center of their parent galaxy increases with increasingdistance (Shaw effect). The Shaw effect appears less evident, or absent,for (more luminous) supernovae of Type Ia. The data are consistent with,but do not prove, the hypothesis that (presumably reddended) SNe II aremore likely to be discovered in the red than in the blue. Due tointensive surveillance, most bright SNe Ia tend to be found beforemaximum, whereas the majority of faint SNe Ia are discovered aftermaximum light.

Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. I. Selection, observations and data reduction.
We present accurate surface photometry in the B, V, R, I, H and Kpassbands of 86 spiral galaxies. The galaxies in this statisticallycomplete sample of undisturbed spirals were selected from the UGC tohave minimum diameters of 2' and minor over major axis ratios largerthan 0.625. This sample has been selected in such a way that it can beused to represent a volume limited sample. The observation and reductiontechniques are described in detail, especially the not often useddriftscan technique for CCDs and the relatively new techniques usingnear-infrared (near-IR) arrays. For each galaxy we present radialprofiles of surface brightness. Using these profiles we calculated theintegrated magnitudes of the galaxies in the different passbands. Weperformed internal and external consistency checks for the magnitudes aswell as the luminosity profiles. The internal consistency is well withinthe estimated errors. Comparisons with other authors indicate thatmeasurements from photographic plates can show large deviations in thezero-point magnitude. Our surface brightness profiles agree within theerrors with other CCD measurements. The comparison of integratedmagnitudes shows a large scatter, but a consistent zero-point. Thesemeasurements will be used in a series of forthcoming papers to discusscentral surface brightnesses, scalelengths, colors and color gradientsof disks of spiral galaxies.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

H I 21 centimeter observations and I-band CCD surface photometry of spiral galaxies behind the Virgo Cluster and toward its antipode
Sample selection, radio and optical data acquisition and reduction, andobservation results are presented for spiral galaxies behind the VirgoCluster and toward its antipode. I-band CCD photometry was obtained forall the bright galaxies and part of the sample of faint galaxies in thetwo local volumes was studied. The statistical properties of the galaxysamples are discussed.

Dynamics of Binary Galaxies. I. Wide Pairs
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...419...30C&db_key=AST

General study of group membership. II - Determination of nearby groups
We present a whole sky catalog of nearby groups of galaxies taken fromthe Lyon-Meudon Extragalactic Database. From the 78,000 objects in thedatabase, we extracted a sample of 6392 galaxies, complete up to thelimiting apparent magnitude B0 = 14.0. Moreover, in order to considersolely the galaxies of the local universe, all the selected galaxieshave a known recession velocity smaller than 5500 km/s. Two methods wereused in group construction: a Huchra-Geller (1982) derived percolationmethod and a Tully (1980) derived hierarchical method. Each method gaveus one catalog. These were then compared and synthesized to obtain asingle catalog containing the most reliable groups. There are 485 groupsof a least three members in the final catalog.

Bars Within Bars in Lenticular and Spiral Galaxies - a Step in Secular Evolution
We review observations of spiral or lenticular barred galaxies havinginside their primary bar either a misaligned inner (secondary) bar or amisaligned triaxial bulge. Some CCD near-IR images are presented.Galaxies with a nuclear ring, as well as our Galaxy, are considered asother likely candidates for having bars within bars. Some cases cannotbe explained in terms of projection effects on two perpendicular bars.No favoured angle between the two stellar bars is found. The secondarybar either leads or trails the primary bar, strongly indicating time-dependent systems rotating with two different pattern speeds. Offsetsbetween a stellar bar and a gaseous bar can be explained with identicalpattern speeds under particular conditions. Models of embedded or nestedbars, produced by self-consistent 3D N-body simulations with gas andstars, are presented and the necessary and specific conditions for themto be formed are given. Dissipation as well as a moderate inner Lindbladresonance play a major role to induce and maintain the decouplingbetween the central and outer galaxy parts. The double-barred systemsare stable over more than 5 turns of the secondary bar which is also thefaster one. In some cases, a nuclear gaseous ring is formed near thesecondary bar end. The system of embedded bars transports amounts of gascloser to the galactic center and may be invoked as a likely mechanismto fuel active galactic nuclei. The two bar phase is followed by thedissolution of the secondary bar or even the two bars (depending on themodel) which is induced by a broad and strong inner Lindblad resonance.The final central galaxy shape resulting from the two bar destruction issimilar to observed triaxial bulges, suggesting that some of them arerelics of destroyed bars. Thus, disc galaxies can be viewed astime-dependent systems, where secular evolution, especially due todissipative effects, is strongly transforming their morphologies andtheir kinematics over less than a Hubble time. Secular evolution causesgalaxies to change their Hubble type during their lifetimes.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:おとめ座
Right ascension:13h12m40.00s
Declination:+12°35'59.0"
Aparent dimensions:2.754′ × 2.455′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 5020
HYPERLEDA-IPGC 45883

→ Request more catalogs and designations from VizieR