Tartalom
Képek
Kép feltöltése
DSS Images Other Images
Kapcsolódó cikkek
Characterization of open cluster remnants Context: Despite progress in the theoretical knowledge of open clusterremnants and the growing search for observational identifications inrecent years, open questions still remain. The methods used to analyzeopen cluster remnants and criteria to define them as physical systemsare not homogeneous. In this work we present a systematic method forstudying these objects that provides a view of their properties andallows their characterization. Aims: Eighteen remnant candidates areanalyzed by means of photometric and proper motion data. These dataprovide information on objects and their fields. We establish criteriafor characterizing open cluster remnants, taking observationaluncertainties into account. Methods: 2MASS J and H photometry isemployed (i) to study structural properties of the objects by means ofradial stellar density profiles, (ii) to test for any similarity betweenobjects and fields with a statistical comparison method applied to thedistributions of stars in the CMDs, and (iii) to obtain ages, reddeningvalues, and distances from the CMD, taking an index of isochrone fitinto account. The UCAC2 proper motions allowed an objective comparisonbetween objects and large solid angle offset fields. Results: Theobjective analysis based on the present methods indicates 13open-cluster remnants in the sample. Evidence of the presence of binarystars is found, as expected for dynamically evolved systems. Finally, weinfer possible evolutionary stages among remnants from the structure,proper motion, and CMD distributions. The low stellar statistics forindividual objects is overcome by means of the construction of compositeproper motion and CMD diagrams. The distributions of remnants in thecomposite diagrams resemble the single-star and unresolved binary stardistributions of open clusters.
| Photometry of Magellanic Cloud clusters with the Advanced Camera for Surveys - II. The unique LMC cluster ESO 121-SC03 We present the results of photometric measurements from images of theLarge Magellanic Cloud (LMC) cluster ESO 121-SC03 taken with theAdvanced Camera for Surveys (ACS) on the Hubble Space Telescope. Ourresulting colour-magnitude diagram (CMD) reaches 3 mag below themain-sequence turn-off, and represents by far the deepest observation ofthis cluster to date. We also present similar photometry from ACSimaging of the accreted Sagittarius dSph cluster Palomar 12, used inthis work as a comparison cluster. From analysis of its CMD, we obtainestimates for the metallicity and reddening of ESO 121-SC03: [Fe/H] = -0.97 +/- 0.10 and E(V - I) = 0.04 +/- 0.02, in excellent agreement withprevious studies. The observed horizontal branch (HB) level in ESO121-SC03 suggests this cluster may lie 20 per cent closer to us thandoes the centre of the LMC. ESO 121-SC03 also possesses a significantpopulation of blue stragglers, which we briefly discuss. Our newphotometry allows us to undertake a detailed study of the age of ESO121-SC03 relative to Palomar 12 and the Galactic globular cluster 47Tuc. We employ both vertical and horizontal differential indicators onthe CMD, calibrated against isochrones from the Victoria-Regina stellarmodels. These models allow us to account for the differentα-element abundances in Palomar 12 and 47 Tuc, as well as theunknown run of α-elements in ESO 121-SC03. Taking a straighterror-weighted mean of our set of age measurements yields ESO 121-SC03to be 73 +/- 4 per cent the age of 47 Tuc, and 91 +/- 5 per cent the ageof Palomar 12. Palomar 12 is 79 +/- 6 per cent as old as 47 Tuc,consistent with previous work. Our result corresponds to an absolute agefor ESO 121-SC03 in the range 8.3-9.8 Gyr, depending on the age assumedfor 47 Tuc, therefore confirming ESO 121-SC03 as the only known clusterto lie squarely within the LMC age gap. We briefly discuss a suggestionfrom earlier work that ESO 121-SC03 may have been accreted into the LMCsystem.
| Spectral evolution of star clusters in the Large Magellanic Cloud. I. Blue concentrated clusters in the age range 40-300 Myr Aims.Integrated spectroscopy of a sample of 17 blue concentrated LargeMagellanic Cloud (LMC) clusters is presented and its spectral evolutionstudied. The spectra span the range ≈(3600-6800) Å with aresolution of ≈14 Å FWHM, being used to determine cluster agesand, in connection with their spatial distribution, to explore the LMCstructure and cluster formation history. Methods.Cluster reddeningvalues were estimated by interpolation, using the available extinctionmaps. We used two methods to derive cluster ages: (i) template matching,in which line strengths and continuum distribution of the clusterspectra were compared and matched to those of template clusters withknown astrophysical properties, and (ii) equivalent width (EW) method,in which new age/metallicity calibrations were used together withdiagnostic diagrams involving the sum of EWs of selected spectral lines(K Ca II, G band (CH), Mg I, Hδ, Hγ and Hβ).Results.The derived cluster ages range from 40 Myr (NGC 2130and SL 237) to 300 Myr (NGC 1932and SL 709), a good agreement between the results ofthe two methods being obtained. Combining the present sample withadditional ones indicates that cluster deprojected distances from theLMC center are related to age in the sense that inner clusters tend tobe younger. Conclusions.Spectral libraries of star clusters are usefuldatasets for spectral classifications and extraction of parameterinformation for target star clusters and galaxies. The present clustersample complements previous ones, in an effort to gather a spectrallibrary with several clusters per age bin.
| Comparing the properties of local globular cluster systems: implications for the formation of the Galactic halo We investigate the hypothesis that some fraction of the globularclusters presently observed in the Galactic halo formed in externaldwarf galaxies. This is done by means of a detailed comparison betweenthe `old halo', `young halo' and `bulge/disc' subsystems defined by Zinnand the globular clusters in the Large Magellanic Cloud, SmallMagellanic Cloud, and Fornax and Sagittarius dwarf spheroidal galaxies.We first use high-quality photometry from Hubble Space Telescope imagesto derive a complete set of uniform measurements of horizontal branch(HB) morphology in the external clusters. We also compile structural andmetallicity measurements for these objects and update the data base ofsuch measurements for the Galactic globular clusters, including newcalculations of HB morphology for 11 objects. Using these data togetherwith recent measurements of globular cluster kinematics and ages weexamine the characteristics of the three Galactic cluster subsystems.Each is quite distinct in terms of their spatial and age distributions,age-metallicity relationships, and typical orbital parameters, althoughwe observe some old halo clusters with ages and orbits more similar tothose of young halo objects. In addition, almost all of the Galacticglobular clusters with large core radii fall into the young halosubsystem, while the old halo and bulge/disc ensembles are characterizedby compact clusters. We demonstrate that the majority of the externalglobular clusters are essentially indistinguishable from the Galacticyoung halo objects in terms of HB morphology, but ~20-30 per cent ofexternal clusters have HB morphologies most similar to the Galactic oldhalo clusters. We further show that the external clusters have adistribution of core radii which very closely matches that for the younghalo objects. The old halo distribution of core radii can be very wellrepresented by a composite distribution formed from ~83-85 per cent ofobjects with structures typical of bulge/disc clusters, and ~15-17 percent of objects with structures typical of external clusters. Takentogether our results fully support the accretion hypothesis. We concludethat all 30 young halo clusters and 15-17 per cent of the old haloclusters (10-12 objects) are of external origin. Based on cluster numbercounts, we estimate that the Galaxy may have experienced approximatelyseven merger events with cluster-bearing dwarf-spheroidal-type galaxiesduring its lifetime, building up ~45-50 per cent of the mass of theGalactic stellar halo. Finally, we identify a number of old halo objectswhich have properties characteristic of accreted clusters. Several ofthe clusters associated with the recently proposed dwarf galaxy in CanisMajor fall into this category.
| Globular clusters and the formation of the outer Galactic halo Globular clusters in the outer halo (Rgc > 15kpc) arefound to be systematically fainter than those at smaller Galactocentricdistances. Within the outer halo the compact clusters with half-lightradii Rh < 10pc are only found at Rgc <40kpc, while on the other hand the larger clusters with Rh> 10pc are encountered at all Galactocentric distances. Among thecompact clusters with Rh < 10pc that have Rgc> 15kpc, there are two objects with surprisingly high metallicities.One of these is Terzan 7, which is a companion of the Sagittarius dwarf.The other is Palomar 1. The data on these two objects suggests that theymight have had similar evolutionary histories. It is also noted that,with one exception, luminous globular clusters in the outer halo are allcompact whereas faint ones may have any radius. This also holds forglobular clusters in the Large Magellanic Cloud, Small Magellanic Cloudand Fornax dwarf. The lone exception is the large luminous globular NGC2419. Possibly this object is not a normal globular cluster, but thestripped core of a former dwarf spheroidal. In this respect it mayresemble ω Centauri.
| Infrared Surface Brightness Fluctuations of Magellanic Star Clusters We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.
| Photometry of Magellanic Cloud clusters with the Advanced Camera for Surveys - I. The old Large Magellanic Cloud clusters NGC 1928, 1939 and Reticulum We present the results of photometric measurements from images of theLarge Magellanic Cloud (LMC) globular clusters NGC 1928, 1939 andReticulum taken with the Advanced Camera for Surveys on the Hubble SpaceTelescope. Exposures through the F555W and F814W filters result inhigh-accuracy colour-magnitude diagrams (CMDs) for these three clusters.This is the first time that CMDs for NGC 1928 and 1939 have beenpublished. All three clusters possess CMDs with features indicating themto be >10 Gyr old, including main-sequence turn-offs at V~ 23 andwell-populated horizontal branches (HBs). We use the CMDs to obtainmetallicity and reddening estimates for each cluster. NGC 1939 is ametal-poor cluster, with [Fe/H]=-2.10 +/- 0.19, while NGC 1928 issignificantly more metal rich, with [Fe/H]=-1.27 +/- 0.14. The abundanceof Reticulum is intermediate between the two, with [Fe/H]=-1.66 +/-0.12- a measurement which matches well with previous estimates. Allthree clusters are moderately reddened, with values ranging from E(V-I)= 0.07 +/- 0.02 for Reticulum and E(V-I) = 0.08 +/- 0.02 for NGC 1928,to E(V-I) = 0.16 +/- 0.03 for NGC 1939. After correcting the CMDs forextinction we estimate the HB morphology of each cluster. NGC 1928 and1939 possess HBs consisting almost exclusively of stars to the blue ofthe instability strip, with NGC 1928 in addition showing evidence for anextended blue HB. In contrast, Reticulum has an intermediate HBmorphology, with stars across the instability strip. Using a variety ofdating techniques we show that these three clusters are coeval with eachother and the oldest Galactic and LMC globular clusters, to within ~2Gyr. The census of known old LMC globular clusters therefore now numbers15 plus the unique, younger cluster ESO121-SC03. The NGC 1939 fieldcontains another cluster in the line of sight, NGC 1938. A CMD for thisobject shows it to be less than ~400 Myr old, and it is thereforeunlikely to be physically associated with NGC 1939.
| Fundamental parameters of the LMC clusters NGC 1836, NGC 1860, NGC 1865, SL 444, LW 224 and SL 548 Complementing our recent Washington photometric studies on intermediateage and young Large Magellanic Cloud (LMC) clusters, we now turn ourattention to six previously unstudied star clusters in the transitionrange 200-700 Myr. We study NGC 1836, 1860 and 1865, which are projectedon the LMC bar; SL 444, also located in the central disc but outside thebar; and LW 224 and SL 548, both located in the outer disc. We deriveages and metallicities from extracted T1 versusC-T1 colour-magnitude diagrams (CMDs), using theoreticalisochrones recently computed for the Washington photometric system. Forthe metallicity determinations, these CMDs are particularly sensitive.We also estimate ages and metallicities of the surrounding fields of NGC1860 and 1865 by employing the δT1 index defined inGeisler et al. (1997, AJ, 114, 1920) and theoretical isochrones. Byadding the present cluster sample to those of our previous studies, wenow gather 37 LMC clusters with homogeneous parameter determinations,which are employed to probe the chemical enrichment of the LMC and itsspatial distribution. On average, inner disc clusters turned out to benot only younger than the outer ones, but also more metal-rich; somehave solar metal content. Furthermore, inner clusters located to thewest of the LMC centre are younger and more metal-rich than theireastern counterparts. We propose that a bursting formation mechanism,with an important formation event centred at ~2.0 Gyr, provides a betterdescription of the cluster age-metallicity relation than a closed-boxchemical evolution model. In the outer disc, the field star formationseems to have lasted until 2 Gyr ago while it continued in the innerdisc for almost 1 Gyr longer.
| The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud We present the catalog of RR Lyr stars discovered in a 4.5 squaredegrees area in the central parts of the Large Magellanic Cloud (LMC).Presented sample contains 7612 objects, including 5455 fundamental modepulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe)and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist ofseveral dozen other short-period pulsating variables. The catalog datainclude astrometry, periods, BVI photometry, amplitudes, and parametersof the Fourier decomposition of the I-band light curve of each object.We present density map of RR Lyr stars in the observed fields whichshows that the variables are strongly concentrated toward the LMCcenter. The modal values of the period distribution for RRab, RRc andRRe stars are 0.573, 0.339 and 0.276 days, respectively. Theperiod-luminosity diagrams for BVI magnitudes and for extinctioninsensitive index W_I are constructed. We provide the log P-I, log P-Vand log P-W_I relations for RRab, RRc and RRe stars. The mean observedV-band magnitudes of RR Lyr stars in the LMC are 19.36 mag and 19.31 magfor ab and c types, respectively, while the extinction free values are18.91 mag and 18.89 mag.We found a large number of RR Lyr stars pulsating in two modes closelyspaced in the power spectrum. These stars are believed to exhibitnon-radial pulsating modes. We discovered three stars whichsimultaneously reveal RR Lyr-type and eclipsing-type variability. If anyof these objects were an eclipsing binary system containing RR Lyr star,then for the first time the direct determination of the mass of RR Lyrvariable would be possible.We provide a list of six LMC star clusters which contain RR Lyr stars.The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The perioddistribution of these stars suggests that NGC1835 shares features ofOosterhoff type I and type II groups.All presented data, including individual BVI observations and findingcharts are available from the OGLE Internet archive.
| Ages and metallicities of eight star clusters and their surrounding fields in the inner disc of the Large Magellanic Cloud We present Washington system colour-magnitude diagrams for 8 starclusters and their surrounding fields which, with one exception, liewithin the inner parts of the Large Magellanic Cloud (LMC) disc. Carefulattention is paid to separating out the cluster and field stardistributions. Ages and metallicities are then determined in aconsistent manner for both populations in two different ways. We firstcompare the colour-magnitude diagrams (CMDs) with new theoreticalisochrones in the Washington system. We also derive ages using themagnitude difference between the red clump and the turnoff, and derivemetallicities by comparing the giant branches to standard calibratingclusters. For this latter metallicity derivation, we presentage-dependent metallicity corrections for intermediate age clusters(IACs) based on the new isochrones. The two methods for both age andmetallicity determination are in good agreement with each other. Allclusters are found to be IACs (1-3 Gyr), with [Fe/H] from -0.4 to -0.9.We find that the stellar population of each star cluster is generallyquite similar to that of the field where it is embedded, sharing itsmean age and metallicity. Combining the present sample with a revisionof that of Bica et al. studied similarly, we find that our metallicitiesfor IACs are intermediate in metallicity to those for clusters ofsimilar age studied by Olszewski et al. and by Beasley, Hoyle &Sharples. A combined age-metallicity relation is presented which showsthat LMC clusters formed between 1-3 Gyr ago with a mean metallicity(-0.5 dex) and metallicity spread (0.23 dex) independent of age. Goodagreement is found with the bursting model of Pagel & Tautvaisiene.No evidence for a metallicity gradient is found.
| Surface brightness profiles and structural parameters for globular clusters in the Fornax and Sagittarius dwarf spheroidal galaxies We present radial surface brightness profiles for all five globularclusters in the Fornax dwarf spheroidal galaxy, and for the four presentmembers of the Sagittarius dwarf spheroidal galaxy. These profiles arederived from archival Hubble Space Telescope observations, and have beencalculated using the same techniques with which we measured profiles inour previous studies of Large and Small Magellanic Cloud (LMC and SMC)clusters, apart from some small modifications. From the surfacebrightness profiles, we have determined structural parameters for eachcluster, including core radii and luminosity and mass estimates. We alsoprovide a brief summary of literature measurements of other parametersfor these clusters, including their ages, metallicities and distances.Our core radius measurements are mostly in good agreement with thosefrom previous lower resolution studies, although for several clustersour new values are significantly different. The profile for Fornaxcluster 5 does not appear to be well fitted by a King-type model and wesuggest that it is a post-core-collapse candidate. We examine thedistribution of cluster core radii in each of the two dwarf galaxysystems and compare these with the distribution of core radii for oldLMC clusters. The three distributions match within the limits ofmeasurement errors and the small-sample sizes. We discuss theimplications of this in the context of the radius-age trend we havepreviously highlighted for the Magellanic Cloud clusters.
| Constraining the LMC cluster age gap: Washington photometry of NGC 2155 and SL 896 (LW 480) We carried out Washington system photometry of the intermediate-ageLarge Magellanic Cloud (LMC) star clusters NGC2155 and SL896 (LW480). Wederive ages and metallicities from the T1 versusC-T1 colour-magnitude diagrams (CMDs). For the first time anage has been obtained for SL896, 2.3+/-0.5Gyr. For NGC2155 we derive3.6+/-0.7Gyr. The two clusters basically define the lower age limit ofthe LMC age gap. In particular, NGC2155 is confirmed as the oldestintermediate-age LMC cluster so far studied. The derived metallicitiesare [Fe/H]=-0.9+/-0.2 and -0.6+/-0.2 for NGC2155 and SL896,respectively. We also studied the CMDs of the surrounding fields, whichhave a dominant turn-off comparable to that of the clusters themselves,and similar metallicity, showing that one is dealing with anintermediate-age disc where clusters and field stars have the sameorigin. We inserted the present clusters in the LMC and Small MagellanicCloud (SMC) age-metallicity relations, using a set of homogeneousdeterminations with the same method as in our previous studies, nowtotalling 15 LMC clusters and four SMC clusters, together with someadditional values from the literature. The LMC and SMC age-metallicityrelations appear to be remarkably complementary, since the SMC wasactively star-forming during the LMC quiescent age gap epoch.
| Ages and metallicities of five intermediate-age star clusters projected towards the Small Magellanic Cloud Colour-magnitude diagrams are presented for the first time for L32, L38,K28 (L43), K44 (L68) and L116, which are clusters projected on to theouter parts of the Small Magellanic Cloud (SMC). The photometry wascarried out in the Washington system C and T1 filters,allowing the determination of ages by means of the magnitude differencebetween the red giant clump and the main-sequence turn-off, andmetallicities from the red giant branch locus. The clusters have ages inthe range 2-6Gyr, and metallicities in the range-1.65<[Fe/H]<-1.10, increasing the sample of intermediate-ageclusters in the SMC. L116, the outermost cluster projected on to theSMC, is a foreground cluster, and somewhat closer to us than the LargeMagellanic Cloud. Our results, combined with those for other clusters inthe literature, show epochs of sudden chemical enrichment in theage-metallicity plane, which favour a bursting star formation history asopposed to a continuous one for the SMC.
| The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems Prompted by a new catalogue of M31 globular clusters, we have collectedtogether individual metallicity values for globular clusters in theLocal Group. Although we briefly describe the globular cluster systemsof the individual Local Group galaxies, the main thrust of our paper isto examine the collective properties. In this way we are simulating thedissipationless merger of the Local Group, into presumably an ellipticalgalaxy. Such a merger is dominated by the Milky Way and M31, whichappear to be fairly typical examples of globular cluster systems ofspiral galaxies. The Local Group `Elliptical' has about 700 +/- 125globular clusters, with a luminosity function resembling the `universal'one. The metallicity distribution has peaks at [Fe/H] ~ -1.55 and -0.64with a metal-poor to metal-rich ratio of 2.5:1. The specific frequencyof the Local Group Elliptical is initially about 1 but rises to about 3,when the young stellar populations fade and the galaxy resembles an oldelliptical. The metallicity distribution and stellar populationcorrected specific frequency are similar to that of some known earlytype galaxies. Based on our results, we briefly speculate on the originof globular cluster systems in galaxies.
| Updated Information on the Local Group The present note updates the information published in my recentmonograph on The Galaxies of the Local Group. Highlights include (1) theaddition of the newly discovered Cetus dwarf spheroidal as a certainmember of the Local Group; (2) an improved distance for the Sagittariusdwarf irregular galaxy (SagDIG), which now places this object very closeto the edge of the Local Group zero-velocity surface; (3) moreinformation on the evolutionary histories of some individual Local Groupmembers; and (4) improved distance determinations to, and luminositiesfor, a number of Local Group members. These data increase the number ofcertain (or probable) Local Group members to 36. The spatialdistribution of these galaxies supports Hubble's claim that the LocalGroup ``is isolated in the general field.'' Currently available evidencesuggests that star formation continued much longer in many dwarfspheroidals than it did in the main body of the Galactic halo. It issuggested that ``young'' globular clusters, such as Ruprecht 106, mighthave formed in now defunct dwarf spheroidals. Assuming SagDIG, which isthe most remote Local Group galaxy, to lie on, or just inside, thezero-velocity surface of the Local Group yields a dynamical age>~17.9+/-2.7 Gyr. However, this value is meaningful only if the outerregions of the local Group are in virial equilibrium.
| The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.
| Statistics of Stellar Populations of Star Clusters and Surrounding Fields in the Outer Disk of the Large Magellanic Cloud A comparative analysis of Washington color-magnitude diagrams (CMDs) for14 star clusters and respective surrounding fields in the LargeMagellanic Cloud (LMC) outer disk is presented. Each CCD frame includingfield and the respective cluster covers an area of 185 arcmin^2. Thestellar population sampled is of intermediate age and metallicity. CMDradial analysis involving star count ratios, morphologies, andintegrated light properties are carried out. Luminosity functions (LFs)are also presented. The two main results are, (1) within the range 4kpc
| Spectroscopic analysis of the candidate globular clusters NGC 1928 and 1939 in the Large Magellanic Cloud The integrated spectral properties in the range 3600-6700 A of thecandidate old clusters NGC 1928 and 1939 in the LMC bar are comparedwith those of old- and intermediate-age reference LMC clusters, theproperties of which are better established. It has been possible toinfer the age of the sample clusters by means of absorption features andthe continuum distribution, in particular in the plane W_M x W_B (whereW_B is the average of Hdelta, Hγ and H beta equivalent widths, andW_M that of Ca II K, G band and Mg i). The results indicate that NGC1928 and 1939 are compatible with old clusters. The metallicity isderived with respect to galactic globular cluster templates: [Fe/H]~-1.2 and -2.0 for NGC 1928 and 1939, respectively. We also discuss thecensus of Population II clusters in the LMC, their spatial distributionand the possibility of a LMC core and a transient morphologicalclassification for interacting late-type disc galaxies.
| A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.
| Clusters in the west side of the bar of the Large Magellanic Cloud: interacting pairs? In this paper, we present the VI-CCD photometry of 11 unstudied clusterslocated in the bar of the Large Magellanic Cloud (LMC), as a part of aproject aimed to infer the star formation history of this galaxy. Wederive the ages of these clusters by means of isochrone fitting. Threeclose pairs of clusters are included in the sample, namely NGC 1903-SL357, SL 349-SL 353, SL 387-SL 385. We discuss the surface photometry ofthese objects: the distortion in the isophotal contours is regarded as asign of interactions between pairs of physically connected clusters.While the systems SL 349-SL 353 and SL 387-SL 385 are likely pairs ofnearly coeval clusters, NGC 1903-SL 357 is not because of the large agedifference between the two. Several possible mechanisms for theformation of this peculiar pair are examined in the context ofinteractions between the Large and Small Magellanic Cloud (SMC).
| A Search for Old Star Clusters in the Large Magellanic Cloud Abstract image available at:http://adsabs.harvard.edu/abs/1997AJ....114.1920G
| Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.
| Old and Intermediate-Age Stellar Populations in the Magellanic Clouds The Magellanic Clouds have galactocentric distances of 50 and 63kiloparsecs, making it possible to probe the older populations ofclusters and stars in some detail. Although it is clear that bothgalaxies contain an old population, it is not yet certain whether thispopulation is coeval with the date of formation of the oldest globularsin the Milky Way. The kinematics of this old population in the LargeMagellanic Cloud (LMC) are surprising; no component of this oldpopulation is currently measured to be part of a hot halo supported byvelocity dispersion. Spectroscopy of field stars is beginning to showthe existence of a small population of stars with abundances [Fe/H] lessthan -1.4. These stars will help to unravel the star-formation historywhen the next generation of telescopes are commissioned. Asymptoticgiant branch stars, long-period variables, planetary nebulae, andhorizontal-branch clump stars can be used to trace the extent andkinematics of the intermediate-age population. Deep color-magnitudediagrams can be used to derive the relative proportions of stars olderthan 1 Gyr. The age distribution of populous clusters and theage-metallicity relation are used to compare the evolution of the twoMagellanic Clouds to each other. The issue of where the LMC's metalsoriginated is explored, as is the question of what triggers starformation in the Clouds.
| Bar star clusters in the LMC - Formation history from UBV integrated photometry The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.
| Population-I Pulsating Stars. VI - Ages of Star Clusters and Associations On the basis of our age estimations of Population I pulsating stars inour Galaxy (Tsvetkov, 1986a), the mean ages of 6 open star clusterscontaining 21 Delta Scuti-variables and of 8 star clusters andassociations containing 13 classical cepheids, have been evaluated.These mean cluster age estimations weighted according to theprobabilities for different evolutionary phases of the pulsating stars,are obtained in the evolutionary track systems of Iben (1967) andPaczyñski (1970); the cluster ages are larger in theformer system. Our results are compared with those obtained from variousmethods by other authors. Clusters with classical cepheids and withDelta Scuti-stars have ages, respectively, in the ranges 107_108 yearsand 106_109 years. It is shown that the use of simpleperiod-age(-colour) relations for Population I pulsating stars givessufficiently accurate cluster age estimations. By use of our period-agerelations for classical cepheids (Tsvetkov, 1986a), the mean ages of 56other star clusters and associations in our Galaxy, the MagellanicClouds, and M 31 galaxy have been estimated in both systems of tracks.The results are generally in agreement with those obtained from variousmethods by other authors. The use of Population I pulsating stars instar clusters and associations is one of the simplest and most easilyapplied methods for determining cluster ages; but there are somelimitations in its application
| Binary star clusters in the Large Magellanic Cloud In a survey of the LMC cluster system, double clusters with acenter-to-center separation of less than 1.3 arcmin (18 pc) have beenidentified. It is inferred that a considerable fraction of these doubleclusters must be binaries since the calculated projection effects canaccount for only 31 of them. This inference is strongly supported by thefact that the ages available for some of the culsters of the sample (asdetermined from UBV photometry) are less than the computed times ofmerger or disruption of the binary cluster system. Furthermore, thespace distribution of these pairs indicates that these clusters belongto a very young or young population.
| A preliminary survey of collapsed cores in globular clusters This is a preliminary report on surface photometry of the major fractionof known globular clusters, to see which of them show the signs of acollapsed core. More than 20 examples, or one-fifth of the total, arefound. Core classifications are given for all clusters examined. Thefraction of collapsed-core clusters may be an index of how long acluster takes to reexpand after collapse.
| Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.
| A catalogue of stellar associations in the Large Magellanic Cloud. Abstract image available at:http://adsabs.harvard.edu/abs/1970AJ.....75..171L
| 457 New Star Clusters of hte Large Magellanic Cloud Abstract image available at:http://adsabs.harvard.edu/abs/1966AJ.....71..363H
|
Új cikk hozzáadása
Kapcsolódó hivatkozások
- - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása
Besorolás csoportokba:
|
Pozíciós és asztrometriai adatok
Katalógusok és elnevezések:
|