תוכן
תמונות
הוסף תמונה שלך
DSS Images Other Images
מאמרים קשורים
White dwarf masses derived from planetary nebula modelling Aims.We compare the mass distribution of central stars of planetarynebulae (CSPNe) with those of their progeny, white dwarfs (WD). Methods: We use a dynamical method to measure masses with an uncertaintyof 0.02 M_ȯ. Results: The CSPN mass distribution is sharplypeaked at 0.61~M_ȯ. The WD distribution peaks at lower masses(0.58~M_ȯ) and shows a much broader range of masses. Some of thedifference can be explained if the early post-AGB evolution is fasterthan predicted by the Blöcker tracks. Between 30 and 50 per cent ofWD may avoid the PN phase because they have too low a mass. However, thediscrepancy cannot be fully resolved and WD mass distributions may havebeen broadened by observational or model uncertainties.Data is only available in electronic form at http://www.aanda.org
| Time variation of radial gradients in the Galactic disk: electron temperatures and abundances Aims.We investigate the electron temperature gradient in the galacticdisk as measured by young HII regions on the basis of radiorecombination lines and the corresponding gradient in planetary nebulae(PN) based on [OIII] electron temperatures. The main goal is toinvestigate the time evolution of the electron temperature gradient andof the radial abundance gradient, which is essentially a mirror image ofthe temperature gradient. Methods: The recently derived electrontemperature gradient from radio recombination lines in HII regions iscompared with a new determination of the corresponding gradient fromplanetary nebulae for which the progenitor star ages have beendetermined. Results: The newly derived electron temperature gradientfor PN with progenitor stars with ages in the 4-5 Gyr range is muchsteeper than the corresponding gradient for HII regions. These electrontemperature gradients are converted into O/H gradients in order to makecomparisons with previous estimates of the flattening rate of theabundance gradient. Conclusions: .It is concluded that the O/H gradienthas flattened out in the past 5 Gyr at a rate of about 0.0094 dexkpc-1 Gyr-1, in good agreement with our previousestimates.
| The structure of planetary nebulae: theory vs. practice Context.This paper is the first in a short series dedicated to thelong-standing astronomical problem of de-projecting the bi-dimensional,apparent morphology of a three-dimensional mass of gas. Aims.Wefocus on the density distribution in real planetary nebulae (and alltypes of expanding nebulae). Methods. We introduce some basictheoretical notions, discuss the observational methodology, and developan accurate procedure for determining the matter radial profile withinthe sharp portion of nebula in the plane of the sky identified by thezero-velocity-pixel-column (zvpc) of high-resolution spectral images.Results. The general and specific applications of the method (andsome caveats) are discussed. Moreover, we present a series of evolutivesnapshots, combining illustrative examples of both model and trueplanetary nebulae. Conclusions. The zvpc radial-densityreconstruction - added to tomography and 3D recovery developed at theAstronomical Observatory of Padua (Italy) - constitutes a very usefultool for looking more closely at the spatio-kinematics, physicalconditions, ionic structure, and evolution of expanding nebulae.
| The 3-D shaping of NGC 6741: A massive, fast-evolving Planetary Nebula at the recombination-reionization edge We infer the gas kinematics, diagnostics and ionic radial profiles,distance and central star parameters, nebular photo-ionization model,spatial structure and evolutionary phase of the Planetary Nebula NGC6741 by means of long-slit ESO NTT+EMMI high-resolution spectra at nineposition angles, reduced and analysed according to the tomographic and3-D methodologies developed at the Astronomical Observatory of Padua(Italy). NGC 6741 (distance≃2.0 kpc, age≃ 1400 yr, ionizedmass Mion≃ 0.06 Mȯ) is a dense(electron density up to 12 000 cm-3), high-excitation,almost-prolate ellipsoid (0.036 pc × 0.020 pc × 0.018 pc,major, intermediate and minor semi-axes, respectively), surrounded by asharp low-excitation skin (the ionization front), and embedded in aspherical (radius≃ 0.080 pc), almost-neutral, high-density (n(HI)≃ 7 ×103 atoms cm-3) halo containinga large fraction of the nebular mass (Mhalo≥ 0.20Mȯ). The kinematics, physical conditions and ionicstructure indicate that NGC 6741 is in a deep recombination phase,started about 200 years ago, and caused by the rapid luminosity drop ofthe massive (M*=0.66{-}0.68 Mȯ), hot (logT* ≃ 5.23) and faint (logL*/Lȯ ≃ 2.75) post-AGB star, which hasexhausted the hydrogen-shell nuclear burning and is moving along thewhite dwarf cooling sequence. The general expansion law of the ionizedgas in NGC 6741, Vexp(km s-1)=13 × R arcsec,fails in the innermost, highest-excitation layers, which move slowerthan expected. The observed deceleration is ascribable to the luminositydrop of the central star (the decreasing pressure of the hot-bubble nolonger balances the pressure of the ionized gas), and appears instriking contrast to recent reports inferring that acceleration is acommon property of the Planetary Nebulae innermost layers. A detailedcomparative analysis proves that the "U"-shaped expansion velocity fieldis a spurious, incorrect result due to a combination of: (a) simplisticassumptions (spherical shell hypothesis for the nebula); (b) unfitreduction method (emission profiles integrated along the slit); and (c)inappropriate diagnostic choice (λ4686 Å of He II, i.e. athirteen fine-structure components recombination line). Some generalimplications for the shaping mechanisms of Planetary Nebulae arediscussed.
| Helium recombination spectra as temperature diagnostics for planetary nebulae Electron temperatures derived from the HeI recombination line ratios,designated Te(HeI), are presented for 48 planetary nebulae(PNe). We study the effect that temperature fluctuations inside nebulaehave on the Te(HeI) value. We show that a comparison betweenTe(HeI) and the electron temperature derived from the Balmerjump of the HI recombination spectrum, designated Te(HI),provides an opportunity to discriminate between the paradigms of achemically homogeneous plasma with temperature and density variations,and a two-abundance nebular model with hydrogen-deficient materialembedded in diffuse gas of a `normal' chemical composition (i.e.~solar), as the possible causes of the dichotomy between the abundancesthat are deduced from collisionally excited lines and those deduced fromrecombination lines. We find that Te(HeI) values aresignificantly lower than Te(HI) values, with an averagedifference of = 4000 K. Theresult is consistent with the expectation of the two-abundance nebularmodel but is opposite to the prediction of the scenarios of temperaturefluctuations and/or density inhomogeneities. From the observeddifference between Te(HeI) and Te(HI), we estimatethat the filling factor of hydrogen-deficient components has a typicalvalue of 10-4. In spite of its small mass, the existence ofhydrogen-deficient inclusions may potentially have a profound effect inenhancing the intensities of HeI recombination lines and thereby lead toapparently overestimated helium abundances for PNe.
| A reexamination of electron density diagnostics for ionized gaseous nebulae We present a comparison of electron densities derived from opticalforbidden line diagnostic ratios for a sample of over a hundred nebulae.We consider four density indicators, the [O II]λ3729/λ3726, [S II] λ6716/λ6731, [Cl III]λ5517/λ5537 and [Ar IV] λ4711/λ4740 doubletratios. Except for a few H II regions for which data from the literaturewere used, diagnostic line ratios were derived from our own high qualityspectra. For the [O II] λ3729/λ3726 doublet ratio, we findthat our default atomic data set, consisting of transition probabilitiesfrom Zeippen (\cite{zeippen1982}) and collision strengths from Pradhan(\cite{pradhan}), fit the observations well, although at high electrondensities, the [O II] doublet ratio yields densities systematicallylower than those given by the [S II] λ6716/λ6731 doubletratio, suggesting that the ratio of transition probabilities of the [OII] doublet, A(λ3729)/A(λ3726), given by Zeippen(\cite{zeippen1982}) may need to be revised upwards by approximately 6per cent. Our analysis also shows that the more recent calculations of[O II] transition probabilities by Zeippen (\cite{zeippen1987a}) andcollision strengths by McLaughlin & Bell (\cite{mclaughlin}) areinconsistent with the observations at the high and low density limits,respectively, and can therefore be ruled out. We confirm the earlierresult of Copetti & Writzl (\cite{copetti2002}) that the [O II]transition probabilities calculated by Wiese et al. (\cite{wiese}) yieldelectron densities systematically lower than those deduced from the [SII] λ6716/λ6731 doublet ratio and that the discrepancy ismost likely caused by errors in the transition probabilities calculatedby Wiese et al. (\cite{wiese}). Using our default atomic data set for [OII], we find that Ne([O II]) Ne([S II]) ≈Ne([Cl III])< Ne([Ar IV]).
| Electron temperatures and densities of planetary nebulae determined from the nebular hydrogen recombination spectrum and temperature and density variations A method is presented to derive electron temperatures and densities ofplanetary nebulae (PNe) simultaneously, using the observed hydrogenrecombination spectrum, which includes continuum and line emission. Bymatching theoretical spectra to observed spectra around the Balmer jumpat about 3646 Å, we determine electron temperatures and densitiesfor 48 Galactic PNe. The electron temperatures based on this method -hereafter Te(Bal) - are found to be systematically lower thanthose derived from [OIII] λ4959/λ4363 and [OIII] (88 μm+ 52 μm)/λ4959 ratios - hereafterTe([OIII]na) andTe([OIII]fn). The electron densities based on thismethod are found to be systematically higher than those derived from[OII] λ3729/λ3726, [SII] λ6731/λ6716,[ClIII] λ5537/λ5517, [ArIV] λ4740/λ4711 and[OIII] 88 μm/52 μm ratios. These results suggest that temperatureand density fluctuations are generally present within nebulae. Thecomparison of Te([OIII]na) and Te(Bal)suggests that the fractional mean-square temperature variation(t2) has a representative value of 0.031. A majority oftemperatures derived from the Te([OIII]fn) ratioare found to be higher than those of Te([OIII]na),which is attributed to the existence of dense clumps in nebulae - those[OIII] infrared fine-structure lines are suppressed by collisionalde-excitation in the clumps. By comparingTe([OIII]fn), Te([OIII]na)and Te(Bal) and assuming a simple two-density-componentmodel, we find that the filling factor of dense clumps has arepresentative value of 7 × 10-5. The discrepanciesbetween Te([OIII]na) and Te(Bal) arefound to be anticorrelated with electron densities derived from variousdensity indicators; high-density nebulae have the smallest temperaturediscrepancies. This suggests that temperature discrepancy is related tonebular evolution. In addition, He/H abundances of PNe are found to bepositively correlated with the difference betweenTe([OIII]na) and Te(Bal), suggestingthat He/H abundances might have been overestimated generally because ofthe possible existence of H-deficient knots. Electron temperatures anddensities deduced from spectra around the Paschen jump regions at 8250Åare also obtained for four PNe: NGC 7027, NGC 6153, M 1-42 andNGC 7009. Electron densities derived from spectra around the Paschenjump regions are in good agreement with the corresponding values derivedfrom spectra around the Balmer jump, whereas temperatures deduced fromthe spectra around the Paschen jump are found to be lower than thecorresponding values derived from spectra around the Balmer jump for allthe four cases. The reason remains unclear.
| The distances of Type I planetary nebulae The distances D of planetary nebulae (PNe) are still extremelyuncertain. Although a variety of methods have been used to evaluate thisparameter, these are often in conflict, and subject to large random andsystematic errors. It is therefore important to evaluate D using as manyindependent procedures as possible. We outline here one further way inwhich this parameter may be assessed. It is noted that where the nebularmass range is narrow, then one might expect observed PNe radii to beroughly similar. This, where it occurs, would also result in acorrelation between their angular diameters Θ, and distances D.We find that just such a trend occurs for Type I nebulae, and we employthis to determine distances to a further 44 such outflows. Our meanvalues of D appear similar to those of Zhang [ApJS 98 (1995) 659],implying a relatively long PNe distance scale.
| A reanalysis of chemical abundances in galactic PNe and comparison with theoretical predictions New determinations of chemical abundances for He, N, O, Ne, Ar and Sare derived for all galactic planetary nebulae (PNe) so far observedwith a relatively high accuracy, in an effort to overcome differences inthese quantities obtained over the years by different authors usingdifferent procedures. These include: ways to correct for interstellarextinction, the atomic data used to interpret the observed line fluxes,the model nebula adopted to represent real objects and the ionizationcorrections for unseen ions. A unique `good quality' classical-typeprocedure, i.e. making use of collisionally excited forbidden lines toderive ionic abundances of heavy ions, has been applied to allindividual sets of observed line fluxes in each specific position withineach PN. Only observational data obtained with linear detectors, andsatisfying some `quality' criteria, have been considered. Suchobservations go from the mid-1970s up to the end of 2001. Theobservational errors associated with individual line fluxes have beenpropagated through the whole procedure to obtain an estimate of theaccuracy of final abundances independent of an author's `prejudices'.Comparison of the final abundances with those obtained in relevantmulti-object studies on the one hand allowed us to assess the accuracyof the new abundances, and on the other hand proved the usefulness ofthe present work, the basic purpose of which was to take full advantageof the vast amount of observations done so far of galactic PNe, handlingthem in a proper homogeneous way. The number of resulting PNe that havedata of an adequate quality to pass the present selection amounts to131. We believe that the new derived abundances constitute a highlyhomogeneous chemical data set on galactic PNe, with realisticuncertainties, and form a good observational basis for comparison withthe growing number of predictions from stellar evolution theory. Owingto the known discrepancies between the ionic abundances of heavyelements derived from the strong collisonally excited forbidden linesand those derived from the weak, temperature-insensitive recombinationlines, it is recognized that only abundance ratios between heavyelements can be considered as satisfactorily accurate. A comparison withtheoretical predictions allowed us to assess the state of the art inthis topic in any case, providing some findings and suggestions forfurther theoretical and observational work to advance our understandingof the evolution of low- and intermediate-mass stars.
| The relation between Zanstra temperature and morphology in planetary nebulae We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.
| Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}
| Gas temperature and excitation classes in planetary nebulae Empirical methods to estimate the elemental abundances in planetarynebulae usually use the temperatures derived from the [O III] and [N II]emission-line ratios, respectively, for the high- and low-ionizationzones. However, for a large number of objects these values may not beavailable. In order to overcome this difficulty and allow a betterdetermination of abundances, we discuss the relationship between thesetwo temperatures. Although a correlation is not easily seen when asample of different PNe types is used, the situation is improved whenthey are gathered into excitation classes. From [OII]/[OIII] andHeII/HeI line ratios, we define four excitation classes. Then, usingstandard photoionization models which fit most of the data, a linearrelation between the two temperatures is obtained for each of the fourexcitation classes. The method is applied to several objects for whichonly one temperature can be obtained from the observed emission linesand is tested by recalculation of the radial abundance gradient of theGalaxy using a larger number of PNe. We verified that our previousgradient results, obtained with a smaller sample of planetary nebulae,are not changed, indicating that the temperature relation obtained fromthe photoionization models are a good approximation, and thecorresponding statistical error decreases as expected. Tables 3-5, 7 and9 are only available in electronic form at http://www.edpsciences.org
| Turbulent planetary nebulae around [WC]-type stars Through a high-resolution spectroscopic survey, we analyze the velocityfield of 16 planetary nebulae with [WC]- or wels-type nuclei incomparison with 8 nebulae having other central star types. We foundspectral evidence for finite turbulent velocities in [WC]-type planetarynebulae superimposed on an essentially constant expansion velocitypattern. The nebulae around O-type stars show no evidences forsignificant turbulence while their expansion velocity is found toincrease outwards. Both types of nebulae show the same mean expansionvelocity. Our results support the earlier suggestions that nebulaesurrounding [WC] central stars are likely related to long-lastingmomentum-driven phase bubbles. Turbulence in the nebulae can be eithertriggered, or enhanced, by stellar wind inhomogeneities that appearubiquitous in Wolf-Rayet nuclei. Based on observations obtained at theEuropean Southern Observatory and the Observatoire de Haute Provence.
| The distance scale of planetary nebulae By collecting distances from the literature, a set of 73 planetarynebulae with mean distances of high accuracy is derived. This sample isused for recalibration of the mass-radius relationship, used by manystatistical distance methods. An attempt to correct for a statisticalpeculiarity, where errors in the distances influences the mass-radiusrelationship by increasing its slope, has been made for the first time.Distances to PNe in the Galactic Bulge, derived by this new method aswell as other statistical methods from the last decade, are then usedfor the evaluation of these methods as distance indicators. In order ofachieving a Bulge sample that is free from outliers we derive newcriteria for Bulge membership. These criteria are much more stringentthan those used hitherto, in the sense that they also discriminateagainst background objects. By splitting our Bulge sample in two, onewith optically thick (small) PNe and one with optically thin (large)PNe, we find that our calibration is of higher accuracy than most othercalibrations. Differences between the two subsamples, we believe, aredue to the incompleteness of the Bulge sample, as well as the dominanceof optical diameters in the ``thin'' sample and radio diameters in the``thick'' sample. Our final conclusion is that statistical methods givedistances that are at least as accurate as the ones obtained from manyindividual methods. Also, the ``long'' distance scale of Galactic PNe isconfirmed.
| An analysis of the observed radio emission from planetary nebulae We have analysed the radio fluxes for 264 planetary nebulae for whichreliable measurements of fluxes at 1.4 and 5 GHz, and of nebulardiameters are available. For many of the investigated nebulae, theoptical thickness is important, especially at 1.4 GHz. Simple modelslike the one specified only by a single optical thickness or spherical,constant density shells do not account satisfactorily for theobservations. Also an r-2 density distribution is ruled out.A reasonable representation of the observations can be obtained by atwo-component model having regions of two different values of opticalthickness. We show that the nebular diameters smaller than 10arcsec areuncertain, particularly if they come from photographic plates orGaussian fitting to the radio profile. While determining theinterstellar extinction from an optical to radio flux ratio, cautionshould be paid regarding optical thickness effects in the radio. We havedeveloped a method for estimating the value of self absorption. At 1.4GHz self absorption of the flux is usually important and can exceed afactor of 10. At 5 GHz self absorption is negligible for most of theobjects, although in some cases it can reach a factor of 2. The Galacticbulge planetary nebulae when used to calibrate the Shklovsky method givea mean nebular mass of 0.14 Msun. The statistical uncertaintyof the Shklovsky distances is smaller than a factor of 1.5. Table 1 isonly available in electronic form at http://www.edpsciences.org.
| Gravity distances of planetary nebulae II. Aplication to a sample of galactic objects. Not Available
| IUE Spectra and Emission-Line Fluxes for Eight Planetary Nebulae We present IUE spectra and observed emission-line fluxes for theplanetary nebulae NGC 2438, NGC 2610, NGC 5307, NGC 6620, NGC 7354,K3-27, PB 8, and He 2-182. All data have been processed by the finalarchive NEWSIPS routines. PB 8 and He 2-182 display strong C IVλ1549 P Cygni profiles from which terminal wind velocities of-2835+/-500 km s-1 and -2350+/-500 km s-1,respectively, were determined.
| Distances of Galactic Planetary Nebulae Based on a Relationship Between the Central Star Mass and the N/O Abundance In this paper, we propose a method to determine distances of Galacticplanetary nebulae on the basis of a relationship between the centralstar mass and the nebular N/O abundance ratio. This relationship is usedin combination with some basic parameters of the central stars, such asthe lambda 5480 flux, surface gravity and visual magnitude in order toobtain distances to a sample of a hundred Galactic planetary nebulae.
| The dust content of planetary nebulae: a reappraisal We have performed a statistical analysis using broad band IRAS data onabout 500 planetary nebulae with the aim of characterizing their dustcontent. Our approach is different from previous studies in that it usesan extensive grid of photoionization models to test the methods forderiving the dust temperature, the dust-to-gas mass ratio and theaverage grain size. In addition, we use only distance independentdiagrams. With our models, we show the effect of contamination by atomiclines in the broad band IRAS fluxes during planetary nebula evolution.We find that planetary nebulae with very different dust-to-gas massratios exist, so that the dust content is a primordial parameter for theinterpretation of far infrared data of planetary nebulae. In contrastwith previous studies, we find no evidence for a decrease in thedust-to-gas mass ratio as the planetary nebulae evolve. We also showthat the decrease in grain size advocated by Natta & Panagia(\cite{NattaPanagia}) and Lenzuni et al. (\cite{Lenzuni}) is an artefactof their method of analysis. Our results suggest that the timescale fordestruction of dust grains in planetary nebulae is larger than theirlifetime. Table~1 is only accessible in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| A Survey of Planetary Nebulae in the Southern Galactic Bulge We present the results of a deep and uniform narrowband Hα imagingsurvey for planetary nebulae (PNs) in the southern Galactic bulge. Inour survey, we have found 56 new PNs and have rediscovered 45 known PNs.We have measured the radial velocities of this uniformly selected sampleand have also remeasured radial velocities for a subset of 317 PNs fromthe Acker catalog. Using the COBE/DIRBE 1.25, 2.2, and 3.5 μm images,we show that there is a similar longitude distribution of the PNs andthe COBE light in the zone of our deep survey. Also, we find that theextinction in our surveyed fields is not severe and that itsdistribution is fairly uniform. Finally, we present Hα fluxes for47 of our 56 newly discovered PNs and estimate the survey detectionlimit.
| Electron densities in planetary nebulae, and the unusual characteristics of the [S BT II] emission zone} ] densities in planetary nebulae We investigate the radial variation of electron densities in planetarynebulae, using values of ne deriving from the [S ii]<~mbda6717/<~mbda6730 line ratio. As a result, we are able to showthat there is a sharp discontinuity in densities of order 1.4 dex closeto nebular radii R=0.1 pc. It is proposed, as a consequence, that mostnebulae contain two primary [S ii] emission zones, with densitiesdiffering by a factor ~ 10(2) . The intensity of emission from thedenser component increases by an order of magnitude where nebulae passfrom radiation to density-bound expansion regimes, resulting in acorresponding discontinuous jump in [S ii]/Hβ line ratios. Theorigins of these changes are not entirely clear, although one mechanismis investigated whereby the superwind outflows shock interact withexterior AGB envelopes. Finally, the derived trends in ne(R)are used to determine distances for a further 262 nebulae. The resultingdistance scale appears to be comparable to that of Daub (1982) and Cahnet al. (1992).
| The kinematics of 867 galactic planetary nebulae We present a compilation of radial velocities of 867 galactic planetarynebulae. Almost 900 new measurements are included. Previously publishedkinematical data are compared with the new high-resolution data toassess their accuracies. One of the largest samples in the literatureshows evidence for a systematic velocity offset. We calculate weightedaverages between all available data. Of the final values in thecatalogue, 90% have accuracies better than 20 km s(-1) . We use thiscompilation to derive kinematical parameters of the galacticdifferential rotation obtained from least-square fitting and toestablish the Disk rotation curve; we find no significal trend for thepresence of an increasing external rotation curve. We examine also therotation of the bulge; the derived curve is consistent with a linearlyincreasing rotation velocity with l: we find V_b,r=(9.9+/-1.3)l -(6.7+/-8.5) km s(-1) . A possible steeper gradient in the innermostregion is indicated. Table 2 is available in electronic form only, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| The planetary nebulae populations in five galaxies: abundance patterns and evolution We have collected photometric and spectroscopic data on planetarynebulae (PNe) in 5 galaxies: the Milky Way (bulge), M 31 (bulge), M 32,the LMC and the SMC. We have computed the abundances of O, Ne and N andcompared them from one galaxy to another. In each Galaxy, thedistribution of oxygen abundances has a large dispersion. The averageO/H ratio is larger in the M 31 and the Galactic bulge PNe than in thosein the Magellanic Clouds. In a given galaxy, it is also larger for PNewith [O III] luminosities greater than 100 L_ȯ, which are likely toprobe more recent epochs in the galaxy history. We find that the M 31and the Galactic bulge PNe extend the very tight Ne/H-O/H correlationobserved in the Galactic disk and Magellanic Clouds PNe towards highermetallicities. We note that the anticorrelation between N/O and O/H thatwas known to occur in the Magellanic Clouds and in the disk PNe is alsomarginally found in the PNe of the Galactic bulge. Furthermore, we findthat high N/O ratios are higher for less luminous PNe. In M 32, all PNehave a large N/O ratio, indicating that the stellar nitrogen abundanceis enhanced in this galaxy. We have also compared the PN evolution inthe different galactic systems by constructing diagrams that areindependent of abundances, and have found strikingly differentbehaviours of the various samples. In order to help in theinterpretation of these data, we have constructed a grid of expanding,PN photoionization models in which the central stars evolve according tothe evolutionary tracks of Bl{öcker (1995). These models show thatthe apparent spectroscopic properties of PNe are extremely dependent,not only on the central stars, but also on the masses and expansionvelocities of the nebular envelopes. The main conclusion of theconfrontation of the observed samples with the model grids is that thePN populations are indeed not the same in the various parent galaxies.Both stars and nebulae are different. In particular, the central starsof the Magellanic Clouds PNe are shown to evolve differently from thehydrogen burning stellar evolutionary models of Bl{öcker (1995). Inthe Galactic bulge, on the other hand, the behaviour of the observed PNeis roughly compatible with the theoretical stellar evolutionary tracks.The case of M 31 is not quite clear, and additional observations arenecessary. It seems that the central star mass distribution is narrowerfor the M 31 PNe than for the Galactic bulge PNe. We show thatspectroscopy of complete samples of PNe down to a factor 100 below themaximum luminosity would help to better characterize the PN central starmass distribution. Tables 1 and 2 are only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http: //cdsweb.u-strasbg.fr/Abstract.html
| Planetary Nebulae in the NRAO VLA Sky Survey The 1.4 GHz NRAO VLA Sky Survey (NVSS) images and source catalog wereused to detect radio emission from the 885 planetary nebulae north ofJ2000 declination delta = -40 deg in the Strasbourg-ESO Catalogue ofGalactic Planetary Nebulae. We identified 680 radio sources brighterthan about S = 2.5 mJy beam-1 (equivalent to T ~ 0.8 K in the 45" FWHMNVSS beam) with planetary nebulae by coincidence with accurate opticalpositions measured from Digitized Sky Survey (DSS) images. Totalextinction coefficients c at lambda = 4861 Angstroms were calculated forthe 429 planetary nebulae with available H beta fluxes and low free-freeoptical depths at 1.4 GHz. The variation of c with Galactic latitude andlongitude is consistent with the extinction being primarily interstellarand not intrinsic.
| A self-consistent determination of distances, physical parameters, and chemical composition for a large sample of galactic planetary nebulae: chemical composition The relative abundances of He, C, N, O, Ne, Mg, Si, S, and Ar arepresented for, respectively, 185, 65, 212, 221, 180, 13, 41, 197, and205 Galactic planetary nebulae. The observed stages of ionization weretaken into account using the relations between the relative abundancesof different ions derived from a grid of photoionization models for thenebular emission. The chemical compositions of all the planetary nebulaewere determined using the same method and the same atomic data, so thatthe results have a high degree of uniformity; this is the first timethis has been done for such a large sample of Galactic planetary nebulae(221 objects).
| Velocity fields of planetary nebulae Density distributions and velocity fields are derived for four spatiallyresolved planetary nebulae, based on high-resolution long-slit emissionline spectra. We use a photo-ionization code to fit the spectra and toderive the nebular structure, assuming spherical symmetry. We presentthe results for individual nebulae and compare with three objectsanalyzed earlier. The expansion velocities are found to increaseoutward: this is shown to be likely related to the presence of anionization front. Six PN in the sample are found to be ionizationbounded. For one object, which has a WR-type central star, a largeamount of turbulence or irregular structure in the velocity field isfound. The results are in agreement with hydrodynamical calculations, inwhich the velocities also tend to increase with distance from the star.However, the common presence of an ionization front was not predicted.Based on observations taken at ESO
| Abundances in planetary nebulae near the galactic centre. I. Abundance determinations Abundance determinations of about 110 planetary nebulae, which arelikely to be in the Galactic Bulge are presented. Plasma diagnosticshave been performed by making use of the available forbidden line ratioscombined with radio continuum measurements. Chemical abundances of He,O, N, Ne, S, Ar, and Cl are then derived by employing theoreticalnebular models as interpolation devices in establishing the ionizationcorrection factors (ICFs) used to estimate the distribution of atomsamong unobserved ionization stages. The overall agreement between theresults derived by using the model-ICFs and those obtained from thetheoretical models is reasonably good. The uncertainties related to thetotal abundances show a clear dependence on the level of excitation. Inmost cases, the abundances of chlorine can be derived only in objectswith a relatively high Cl-abundance. Contrary to the conclusionpreviously drawn by \cite[Webster (1988)]{we88}, we found the excitationclasses are not uniformly distributed. A clear peak at about classes 5and 6 is noticed. The distribution is shifted toward a lower excitationrange with respect to that of the nearby nebulae, reflecting thedifference in the central star temperature distribution between the twosamples.
| A self-consistent determination of the distances, physical parameters, and chemical composition for a large sample of galactic planetary nebulae: The distances and parameters of central stars and the optical depths of envelopes The distances and parameters of the central stars and the optical depthsof the envelopes in the Lyman limits of neutral hydrogen and neutralhelium were determined in a self-consistent way for 170 Galacticplanetary nebulae (PNe). The distance to each PN was so chosen that thetheoretically calculated evolutionary age of its nucleus was equal tothe dynamical age of its expanding envelope. The effective temperatureof the central star and its related parameters were determined either bythe generalized energy-balance method or, where appropriate, byZanstra's method. The derived distance estimates lend support to a`long' distance scale for PNe and are generally in agreement withcurrent individual and statistical estimates of the distances to PNeavailable in the literature. The mean distance to the bulge PNe is 7.9+/- 0.3 kpc, in agreement with the distance to the Galactic center. Themasses of the central stars of PNe corresponding to the deriveddistances are closely correlated with the nebular nitrogen-to-oxygenabundance ratio.
| Radial velocities of planetary nebulae towards the Galactic bulge Accurate radial velocities for a sample of 71 planetary nebulae, mostlylocated in the direction of the Galactic Centre, are presented. Most ofthe nebulae discussed in this paper are likely members of the Galacticbulge, based on their radial velocity, longitude and derived distance.The data give a large improvement over existing catalogues, doubling thesample of bulge planetary nebulae with well-determined velocities andsuggesting that kinematics of the Galactic Bulge can usefully be studiedby planetary nebulae. Based on observations obtained at the EuropeanSouthern Observatory. Table 1 is also available in electronic form atthe CDS vis anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Classification of planetary nebulae by cluster analysis and artificial neural networks. According to the chemical composition, a sample of 192 Planetary Nebulaeof different types has been re-classified, and 41 others have beenclassified for the first time, by means of two methods not employed sofar in this field: hierarchical cluster analysis and supervisedartificial neural network. The cluster analysis reveals itself as a goodfirst guess for grouping Planetary Nebulae, while an artificial neuralnetwork provides reliable automated classification of this kind ofobjects.
|
הכנס מאמר חדש
לינקים קשורים
הכנס לינק חדש
משמש של הקבוצה הבאה
|
תצפית ומידע אסטרומטרי
קטלוגים וכינוים:
|