Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4125


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Central Engines of 19 LINERs as Viewed by Chandra
Using archival Chandra observations of 19 LINERs, we explore the X-rayproperties of their inner kiloparsec to determine the origin of theirnuclear X-ray emission, to investigate the presence of an AGN, and toidentify the power source of the optical emission lines. The relativenumbers of LINER types in our sample are similar to those in opticalspectroscopic surveys. We find that diffuse, thermal emission is verycommon and is concentrated within the central few hundred parsecs. Theaverage spectra of the hot gas in spiral and elliptical galaxies arevery similar to those of normal galaxies. They can be fitted with athermal plasma (kT~0.5 keV) plus a power-law (photon index of 1.3-1.5)model. There are on average three detected point sources in their innerkiloparsec with 1037 ergss-1

A Chandra View of Dark Matter in Early-Type Galaxies
We present a Chandra study of mass profiles in seven ellipticalgalaxies, of which three have galaxy-scale and four have group-scalehalos, demarcated at 1013 Msolar. These representthe best available data for nearby objects with comparable X-rayluminosities. We measure approximately flat mass-to-light (M/L) profileswithin an optical half-light radius (Reff), rising by anorder of magnitude at ~10 Reff, which confirms the presenceof dark matter (DM). The data indicate hydrostatic equilibrium, which isalso supported by agreement with studies of stellar kinematics inelliptical galaxies. The data are well fitted by a model comprising anNFW DM profile and a baryonic component following the optical light. Thedistribution of DM halo concentration parameters (c) versusMvir agrees with ΛCDM predictions and our observationsof bright groups. Concentrations are slightly higher than expected,which is most likely a selection effect. Omitting the stellar massdrastically increases c, possibly explaining large concentrations foundby some past observers. The stellar M/LK agree withpopulation synthesis models, assuming a Kroupa IMF. Allowing adiabaticcompression (AC) of the DM halo by baryons made M/L more discrepant,casting some doubt on AC. Our best-fitting models imply total baryonfractions ~0.04-0.09, consistent with models of galaxy formationincorporating strong feedback. The groups exhibit positive temperaturegradients, consistent with the ``universal'' profiles found in othergroups and clusters, whereas the galaxies have negative gradients,suggesting a change in the evolutionary history of the systems aroundMvir~=1013 Msolar.

Mid-Infrared Spectral Diagnostics of Nuclear and Extranuclear Regions in Nearby Galaxies
Mid-infrared diagnostics are presented for a large portion of theSpitzer Infrared Nearby Galaxies Survey (SINGS) sample plus archivaldata from ISO and Spitzer. The SINGS data set includes low- andhigh-resolution spectral maps and broadband imaging in the infrared forover 160 nuclear and extranuclear regions within 75 nearby galaxiesspanning a wide range of morphologies, metallicities, luminosities, andstar formation rates. Our main result is that these mid-infrareddiagnostics effectively constrain a target's dominant power source. Thecombination of a high-ionization line index and PAH strength serves asan efficient discriminant between AGNs and star-forming nuclei,confirming progress made with ISO spectroscopy on starbursting andultraluminous infrared galaxies. The sensitivity of Spitzer allows us toprobe fainter nuclear and star-forming regions within galaxy disks. Wefind that both star-forming nuclei and extranuclear regions stand apartfrom nuclei that are powered by Seyfert or LINER activity. In fact, weidentify areas within four diagnostic diagrams containing >90%Seyfert/LINER nuclei or >90% H II regions/H II nuclei. We also findthat, compared to starbursting nuclei, extranuclear regions typicallyseparate even further from AGNs, especially for low-metallicityextranuclear environments. In addition, instead of the traditionalmid-infrared approach to differentiating between AGNs and star-formingsources that utilizes relatively weak high-ionization lines, we showthat strong low-ionization cooling lines of X-ray-dominated regions like[Si II] 34.82 μm can alternatively be used as excellentdiscriminants. Finally, the typical target in this sample showsrelatively modest interstellar electron density (~400 cm-3)and obscuration (AV~1.0 mag for a foreground screen),consistent with a lack of dense clumps of highly obscured gas and dustresiding in the emitting regions.

Stellar Populations in Nearby Lenticular Galaxies
We have obtained two-dimensional spectral data for a sample of 58 nearbyS0 galaxies with the Multi-Pupil Fiber/Field Spectrograph of the 6 mtelescope of the Special Astrophysical Observatory of the RussianAcademy of Sciences. The Lick indices Hβ, Mg b, and arecalculated separately for the nuclei and for the bulges taken as therings between R=4'' and 7", and the luminosity-weighted ages,metallicities, and Mg/Fe ratios of the stellar populations are estimatedby comparing the data to single stellar population (SSP) models. Fourtypes of galaxy environments are considered: clusters, centers ofgroups, other places in groups, and the field. The nuclei are found tobe on average slightly younger than the bulges in any type ofenvironment, and the bulges of S0 galaxies in sparse environments areyounger than those in dense environments. The effect can be partlyattributed to the well-known age correlation with the stellar velocitydispersion in early-type galaxies (in our sample the galaxies in sparseenvironments are on average less massive than those in denseenvironments), but for the most massive S0 galaxies, withσ*=170-220 km s-1, the age dependence on theenvironment is still significant at the confidence level of 1.5 σ.Based on observations collected with the 6 m telescope (BTA) at theSpecial Astrophysical Observatory (SAO) of the Russian Academy ofSciences (RAS).

Scaling Mass Profiles around Elliptical Galaxies Observed with Chandra and XMM-Newton
We investigated the dynamical structure of 53 elliptical galaxies usingthe Chandra archival X-ray data. In X-ray-luminous galaxies, temperatureincreases with radius and gas density is systematically higher at theoptical outskirts, indicating the presence of a significant amount ofthe group-scale hot gas. In contrast, X-ray-dim galaxies show a flat ordeclining temperature profile against radius and the gas density isrelatively lower at the optical outskirts. Thus, it is found thatX-ray-bright and faint elliptical galaxies are clearly distinguished bythe temperature and gas density profile. The mass profile is well scaledby a virial radius r200 rather than an optical half-radiusre, is quite similar at (0.001-0.03)r200 betweenX-ray-luminous and dim galaxies, and smoothly connects to those profilesof clusters of galaxies. At the inner region of(0.001-0.01)r200 or (0.1-1)re, the mass profilewell traces a stellar mass with a constant mass-to-light ratio ofM/LB=3-10 Msolar/Lsolar. TheM/LB ratio of X-ray-bright galaxies rises up steeply beyond0.01r200 and thus requires a presence of massive dark matterhalo. From the deprojection analysis combined with the XMM-Newton data,we found that X-ray-dim galaxies NGC 3923, NGC 720, and IC 1459 alsohave a high M/LB ratio of 20-30 at 20 kpc, comparable to thatof X-ray-luminous galaxies. Therefore, dark matter is indicated to becommon in elliptical galaxies; their dark matter distribution, as wellas that of galaxy clusters, almost follows the NFW profile.

Peculiarities and populations in elliptical galaxies. III. Dating the last star formation event
Using 6 colours and 4 Lick line-indices we derive two-component modelsof the populations of ellipticals, involving a "primary" and a"juvenile" population. The first component is defined by the regressionsof indices against the central velocity dispersion found in Papers I andII for the {Nop} sample of non-peculiar objects. The second one isapproximated by an SSP, and the modeling derives its age A, metallicityZ and fractional V-luminosity q_V, the fractional mass qMbeing found therefrom. The model is designed for "blueish" peculiargalaxies, i.e. the {Pec} sample and NGC 2865 family in the terminologyof Paper I. The morphological peculiarities and the population anomalyare then believed to involve the same event, i.e. a merger plusstarburst. It is possible to improve the models in a few cases byintroducing diffuse dust (as suggested by far IR data), and/or by takinginto account the fact that Lick- and colour indices do not relate toidentical galaxy volumes. In most of the cases, the mass ratio of youngstars qM seems too small for the product of a recent majormerger: the events under consideration might be minor mergers bringing"the final touch" to the build-up of the structure of the E-type object.The same modeling has been successfully applied to blueish galaxies ofthe {Nop} sample, without morphological peculiarities however, tosupport the occurence of a distinct perturbing event. A few reddishobjects of the {Pec} sample (NGC 3923 family) and of the {Nop} sampleare also modeled, in terms of an excess of high metallicity stars, ordiffuse dust, or both, but the results are inconclusive.

Group, field and isolated early-type galaxies - II. Global trends from nuclear data
We have derived ages, metallicities and enhanced-element ratios[α/Fe] for a sample of 83 early-type galaxies essentially ingroups, the field or isolated objects. The stellar-population propertiesderived for each galaxy correspond to the nuclear re/8aperture extraction. The median age found for Es is 5.8+/-0.6 Gyr andthe average metallicity is +0.37+/-0.03 dex. For S0s, the median age is3.0+/-0.6 Gyr and [Z/H]= 0.53+/-0.04 dex. We compare the distribution ofour galaxies in the Hβ-[MgFe] diagram with Fornax galaxies. Ourelliptical galaxies are 3-4 Gyr younger than Es in the Fornax cluster.We find that the galaxies lie in a plane defined by [Z/H]= 0.99logσ0- 0.46 log(age) - 1.60, or in linear terms Z~σ0× (age) -0.5. More massive (largerσ0) and older galaxies present, on average, large[α/Fe] values, and therefore must have undergone shorterstar-formation time-scales. Comparing group against field/isolatedgalaxies, it is not clear that environment plays an important role indetermining their stellar-population history. In particular, ourisolated galaxies show ages differing by more than 8 Gyr. Finally weexplore our large spectral coverage to derive log(O/H) metallicity fromthe Hα and NIIλ6584 and compare it with model-dependent[Z/H]. We find that the O/H abundances are similar for all galaxies, andwe can interpret it as if most chemical evolution has already finishedin these galaxies.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

O VI in Elliptical Galaxies: Indicators of Cooling Flows
Early-type galaxies often contain a hot X-ray-emitting interstellarmedium [(3-8)×106 K] with an apparent radiative coolingtime much less than a Hubble time. If unopposed by a heating mechanism,the gas will radiatively cool to temperatures <~104 K at arate proportional to LX/TX, typically 0.03-1Msolar yr-1. We can test whether gas is coolingthrough the 3×105 K range by observing the O VIdoublet, whose luminosity is proportional to the cooling rate. Here wereport on a study of an unbiased sample of 24 galaxies, obtaining FarUltraviolet Spectroscopic Explorer spectra to complement the X-ray dataof ROSAT and Chandra. The O VI line emission was detected in about 40%of the galaxies and at a luminosity level similar to the prediction fromthe cooling flow model. There is a correlation betweenM˙OVI and M˙X, although there issignificant dispersion about the relationship, where the O VI isbrighter or dimmer than expected by a factor of 3 or more. If thecooling flow picture is to be retained, then this dispersion requiresthat cooling flows be time-dependent, as might occur by the activity ofan AGN. However, of detected objects, those with the highest or lowestvalues of M˙OVI/M˙X are not systematicallyhot or cool, as one might predict from AGN heating.

A Fundamental Plane Relation for the X-Ray Gas in Normal Elliptical Galaxies
We report on the discovery of a new correlation between globalparameters of the hot interstellar gas in elliptical galaxies. Wereanalyze archival Chandra data for 30 normal early-type systems,removing the contributions of resolved and unresolved point sources toreveal the X-ray morphology of the hot gas. We determine the half-lightradius, RX, and the mean surface brightness, IX,from the gas surface brightness profiles. A spectral analysis determinesthe temperature, TX, of the gas within 3 optical effectiveradii. We find that the galaxies lie on an X-ray gas fundamental plane(XGFP) of the formTX~R0.28XI0.22X.This is close to, but distinct from, a simple luminosity-temperaturerelation. The intrinsic width of the XGFP is only 0.07 dex, nearlyidentical to that of the stellar (optical) fundamental plane (SFP). Thisis surprising since X-ray gas masses are typically ~10-2 ofthe stellar masses. We show that the XGFP is not a simple consequence ofthe virial theorem or hydrostatic equilibrium and that it is essentiallyindependent of the SFP. The XGFP thus represents a genuinely newconstraint on the hydrodynamical evolution of elliptical galaxies.

Infrared Spectral Energy Distributions of Nearby Galaxies
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out acomprehensive multiwavelength survey on a sample of 75 nearby galaxies.The 1-850 μm spectral energy distributions (SEDs) are presented usingbroadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. Theinfrared colors derived from the globally integrated Spitzer data aregenerally consistent with the previous generation of models that weredeveloped using global data for normal star-forming galaxies, althoughsignificant deviations are observed. Spitzer's excellent sensitivity andresolution also allow a detailed investigation of the infrared SEDs forvarious locations within the three large, nearby galaxies NGC 3031(M81), NGC 5194 (M51), and NGC 7331. A wide variety of spectral shapesis found within each galaxy, especially for NGC 3031, the closest of thethree targets and thus the galaxy for which the smallest spatial scalescan be explored. Strong correlations exist between the local starformation rate and the infrared colors fν(70μm)/fν(160 μm) and fν(24μm)/fν(160 μm), suggesting that the 24 and 70 μmemission are useful tracers of the local star formation activity level.Preliminary evidence indicates that variations in the 24 μm emission,and not variations in the emission from polycyclic aromatic hydrocarbonsat 8 μm, drive the variations in the fν(8.0μm)/fν(24 μm) colors within NGC 3031, NGC 5194, andNGC 7331. If the galaxy-to-galaxy variations in SEDs seen in our sampleare representative of the range present at high redshift, thenextrapolations of total infrared luminosities and star formation ratesfrom the observed 24 μm flux will be uncertain at the factor of 5level (total range). The corresponding uncertainties using theredshifted 8.0 μm flux (e.g., observed 24 μm flux for a z=2source) are factors of 10-20. Considerable caution should be used wheninterpreting such extrapolated infrared luminosities.

The Link between Star Formation and Accretion in LINERs: A Comparison with Other Active Galactic Nucleus Subclasses
We present archival high-resolution X-ray imaging observations of 25nearby LINERs observed by ACIS on board Chandra. This sample builds onour previously published proprietary and archival X-ray observations andincludes the complete set of LINERs with published black hole masses andFIR luminosities that have been observed by Chandra. Of the 82 LINERsobserved by Chandra, 41 (50%) display hard nuclear cores consistent withan AGN. The nuclear 2-10 keV luminosities of these AGN-LINERs range from~2×1038 to ~1×1044 ergss-1. Reinforcing our previous work, we find a significantcorrelation between the Eddington ratio,Lbol/LEdd, and the FIR luminosity,LFIR, as well as the IR brightness ratio,LFIR/LB, in the host galaxy of AGN-LINERs thatextends over 7 orders of magnitude in Lbol/LEdd.Combining our AGN-LINER sample with galaxies from other AGN subclasses,we find that this correlation is reinforced in a sample of 129 AGNs,extending over almost 9 orders of magnitude inLbol/LEdd. Using archival and previously publishedobservations of the 6.2 μm PAH feature from ISO, we find that it isunlikely that dust heating by the AGN dominates the FIR luminosity inour sample of AGNs. Our results may therefore imply a fundamental linkbetween the mass accretion rate (M˙), as measured by the Eddingtonratio, and the star formation rate (SFR), as measured by the FIRluminosity. Apart from the overall correlation, we find that thedifferent AGN subclasses occupy distinct regions in the LFIRand Lbol/LEdd plane. Assuming a constant radiativeefficiency for accretion, our results may imply a variation in theSFR/M˙ ratio as a function of AGN activity level, a result that mayhave significant consequences for our understanding of galaxy formationand black hole growth.

Detection of PAH Emission Features from Nearby Elliptical Galaxies with the Spitzer Infrared Spectrograph
According to the current understanding, the presence of a considerableamount of dust in elliptical galaxies is quite common. Recent studieswith ISO and Spitzer even suggest the presence of polycyclic aromatichydrocarbon (PAH) emission features in the spectral energy distributionsof several elliptical galaxies. Hot ionized gas filling the interstellarspace of elliptical galaxies, however, is expected to easily destroysuch very small grains through sputtering by plasma ions. Here wepresent the results of mid-IR spectroscopic observations of fourelliptical galaxies with the Spitzer Infrared Spectrograph (IRS). Wesucceeded in detecting PAH emission features from elliptical galaxies.The observed spectra seem to be quite unusual; the PAH features at 6.2,7.7, and 8.6 μm are very faint or even absent, in contrast toprominent emission features at 11.3 and 12.7 μm, which may reflectpeculiar physical conditions of the interstellar medium. The detectionof the PAHs provides strong constraints on evolution scenarios for theinterstellar medium of elliptical galaxies.

Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra Observations
In order to find an explanation for the radiative quiescence ofsupermassive black holes in the local universe, the most accurateestimates for a sample of nearby galaxies are collected for the mass ofa central black hole (MBH), the nuclear X-ray luminosityLX,nuc, and the circumnuclear hot gas density andtemperature, by using Chandra data. The nuclear X-ray luminosityLX,nuc varies by ~3 orders of magnitude and does not show arelationship with MBH or with the Bondi mass accretion rateM˙B LX,nuc is always much lower than expectedif M˙B ends in a standard accretion disk with highradiative efficiency (this instead can be the case of the active nucleusof Cen A). Radiatively inefficient accretion as in the standardadvection-dominated accretion flow (ADAF) modeling may explain the lowluminosities of a few cases; for others, the predicted luminosity isstill too high, and, in terms of Eddington-scaled quantities, it isincreasingly higher than that observed for increasingM˙B. Variants of the simple radiatively inefficientscenario including outflow and convection may reproduce the low emissionlevels observed, since the amount of matter actually accreted is reducedconsiderably. However, the most promising scenario includes feedbackfrom accretion on the surrounding gas; this has the important advantagesof naturally explaining the observed lack of relationship amongLX,nuc, MBH, and M˙B, and evadingthe problem of the fate of the material accumulating in the centralgalactic regions over cosmological times.

A Chandra Snapshot Survey of Infrared-bright LINERs: A Possible Link Between Star Formation, Active Galactic Nucleus Fueling, and Mass Accretion
We present results from a high-resolution X-ray imaging study of nearbyLINERs observed by ACIS on board Chandra. This study complements andextends previous X-ray studies of LINERs, focusing on the underexploredpopulation of nearby dust-enshrouded infrared-bright LINERs. The sampleconsists of 15 IR-bright LINERs (LFIR/LB>3),with distances that range from 11 to 26 Mpc. Combining our sample withprevious Chandra studies, we find that ~51% (28/55) of the LINERsdisplay compact hard X-ray cores. The nuclear 2-10 keV luminosities ofthe galaxies in this expanded sample range from ~2×1038to ~2×1044 ergs s-1. We find that the mostextreme IR-faint LINERs are exclusively active galactic nuclei (AGNs).The fraction of LINERs containing AGNs appears to decrease with IRbrightness and increase again at the highest values ofLFIR/LB. We find that of the 24 LINERs showingcompact nuclear hard X-ray cores in the expanded sample that wereobserved at Hα wavelengths, only eight actually show evidence of abroad line. Similarly, of the 14 LINERs showing compact nuclear hardX-ray cores with corresponding radio observations, only eight display acompact flat spectrum radio core. These findings emphasize the need forhigh-resolution X-ray imaging observations in the study of IR-brightLINERs. Finally, we find an intriguing trend in the Eddington ratioversus LFIR and LFIR/LB for theAGN-LINERs in the expanded sample that extends over 7 orders ofmagnitude in L/LEdd. This correlation may imply a linkbetween black hole growth, as measured by the Eddington ratio, and thestar formation rate, as measured by the far-IR luminosity andIR-brightness ratio. If the far-IR luminosity is an indicator of themolecular gas content in our sample of LINERs, our results may furtherindicate that the mass accretion rate scales with the host galaxy's fuelsupply. We discuss the potential implications of our results in theframework of black hole growth and AGN fueling in low-luminosity AGNs.

Star Formation Histories of Nearby Elliptical Galaxies. I. Volume-Limited Sample
This work presents high signal-to-noise ratio spectroscopic observationsof a representative sample of nearby elliptical galaxies. Theseobservations provide a strong test of models for the formation ofelliptical galaxies and their star formation histories. Combining thesedata with the González data set, a volume-limited sample of 45galaxies has been defined. Results are in agreement with previousstudies: the existence of the metallicity hyperplane and the Z-plane ofTrager and coworkers is confirmed, and the distribution is clearly dueto physical variations in stellar population parameters and notmeasurement uncertainty. Trends between stellar population parametersand galaxy structural parameters suggest that angular momentum maydetermine the chemical abundance of a galaxy at a given mass.

The Centers of Early-Type Galaxies with Hubble Space Telescope. V. New WFPC2 Photometry
We present observations of 77 early-type galaxies imaged with the PC1CCD of the Hubble Space Telescope (HST) WFPC2. ``Nuker-law'' parametricfits to the surface brightness profiles are used to classify the centralstructure into ``core'' or ``power-law'' forms. Core galaxies aretypically rounder than power-law galaxies. Nearly all power-law galaxieswith central ellipticities ɛ>=0.3 have stellar disks,implying that disks are present in power-law galaxies withɛ<0.3 but are not visible because of unfavorable geometry. Afew low-luminosity flattened core galaxies also have disks; these may betransition forms from power-law galaxies to more luminous core galaxies,which lack disks. Several core galaxies have strong isophote twistsinterior to their break radii, although power-law galaxies have interiortwists of similar physical significance when the photometricperturbations implied by the twists are evaluated. Central colorgradients are typically consistent with the envelope gradients; coregalaxies have somewhat weaker color gradients than power-law galaxies.Nuclei are found in 29% of the core galaxies and 60% of the power-lawgalaxies. Nuclei are typically bluer than the surrounding galaxy. Whilesome nuclei are associated with active galactic nuclei (AGNs), just asmany are not; conversely, not all galaxies known to have a low-level AGNexhibit detectable nuclei in the broadband filters. NGC 4073 and 4382are found to have central minima in their intrinsic starlightdistributions; NGC 4382 resembles the double nucleus of M31. In general,the peak brightness location is coincident with the photocenter of thecore to a typical physical scale of <1 pc. Five galaxies, however,have centers significantly displaced from their surrounding cores; thesemay be unresolved asymmetric double nuclei. Finally, as noted byprevious authors, central dust is visible in about half of the galaxies.The presence and strength of dust correlates with nuclear emission;thus, dust may outline gas that is falling into the central black hole.The prevalence of dust and its morphology suggest that dust clouds form,settle to the center, and disappear repeatedly on ~108 yrtimescales. We discuss the hypothesis that cores are created by thedecay of a massive black hole binary formed in a merger. Apart fromtheir brightness profiles, there are no strong differences between coregalaxies and power-law galaxies that demand this scenario; however, therounder shapes of core, their lack of disks, and their reduced colorgradients may be consistent with it.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555. These observations are associated withGO and GTO proposals 5236, 5446, 5454, 5512, 5943, 5990, 5999, 6099,6386, 6554, 6587, 6633, 7468, 8683, and 9107.

Near infra-red and optical colour gradients in E-type galaxies. Inferences on dust content
Colour gradients are considered for a sample of circa 50 E-type galaxiesin the Local Supercluster. The new data includes isophotal colourprofiles in J-H, J-K, V-J and V-K, measured using 2MASS frames mostlyfrom the Large Galaxies Atlas, V frames from previous work and Vprofiles from the literature. This is supplemented by U-B, B-V, B-R, V-Icolour gradients obtained anew from published photometric data. Colourgradients in E galaxies show remarkably large variations from object toobject and do not correlate with other properties. Metallicity gradientsare the primary cause as shown before. Age gradients with oppositeeffects are possibly needed to explain objects with small colourgradients. Some empirical evidence of such age effects has been foundfor a subset of objects with morphological peculiarities and youngerstars mixed. Dust has only modest effects on colour gradients, as shownby the fact that objects with zero IRAS 100 μ flux have the sameaverage values of the gradients, except in V-J and V-K, as those withnon zero flux (cf. Table 7). This last subsample however exhibits poorbut definite correlations between IRAS flux and gradients, which mightbe caused by the presence of a few relatively dusty galaxies in thesample. Given the absence of a correlation between any gradients andgalaxy velocity dispersion (and hence mass), the observations do notagree with the predictions of the monolithic scenario for the formationof E galaxies. Simulated datasets of “dummy” objectsmimicking the hierarchical scenario have been obtained, and used to testa technique for estimating the dust content of E-galaxies from thecomparison of the V-K (or V-J) colour gradients with the U-B (or B-V)ones: the contents of diffuse dust, gauged in terms of published models,are obtained for a dozen objects.

A dichotomy in the orientation of dust and radio jets in nearby low-power radio galaxies
We examine the properties of central dust in nearby quiescent and activeearly-type galaxies. The active galaxies are low-power radio galaxieswith Fanaroff & Riley type I or I/II radio jets. We focus on (a) thecomparison of the dust distributions in the active and quiescent galaxysamples; and (b) the relation between the radio jet and dustorientations. Our main observational conclusions are: (i) in line withprevious studies, the dust detection rate is higher in radio-jetgalaxies than in non radio-jet galaxies; (ii) radio galaxies contain ahigher fraction of regular dust “ellipses” compared toquiescent galaxies which contain more often irregular dustdistributions; (iii) the morphology, size and orientation of dustellipses and lanes in quiescent early-types and active early-types withkpc-scale radio jets is very similar; (iv) dust ellipses are alignedwith the major axis of the galaxy, dust lanes do not show a preferredalignment except for large (>kpc) dust lanes which are aligned withthe minor axis of the galaxy; and (v) as projected on the sky, jets donot show a preferred orientation relative to the galaxy major axis (andhence dust ellipses), but jets are preferentially perpendicular to dustlanes. We show that the dust ellipses are consistent with being nearlycircular thin disks viewed at random viewing angles. The lanes arelikely warped dust structures, which may be in the process of settlingdown to become regular disks or are being perturbed by anon-gravitational force. We use the observed dust-jet orientations toconstrain the three-dimensional angle θDJ between jetand dust. For dust-lane galaxies, the jet is approximately perpendicularto the dust structure, while for dust-ellipse galaxies there is a muchwider distribution of θDJ. We discuss two scenariosthat could explain the dust/jet/galaxy orientation dichotomy. If lanesare indeed settling, then the jet orientation apparently is roughlyaligned with the angular momentum of the dust before it settles. Iflanes are perturbed by a jet-related force, it appears that it causesthe dust to move out of its equilibrium plane in the galaxy into a planewhich is perpendicular to the jet.

Peculiarities and populations in elliptical galaxies. II. Visual-near IR colours as population indices
As a complement to the data collected and discussed in Paper I of thisseries, 2MASS near-IR images have been used, in connection withavailable V light aperture photometry, to derive the colours V-J, V-K,J-H and J-K within the effective aperture A_e: nearly the same completesample of 110 E-type galaxies is treated. In Paper I these wereclassified, based on morphological criteria, into the ``peculiar'' (orPec) and ``normal'' (or Nop) subsamples. For the Nop subsample, thederived colour indices are tightly related to the galaxy masses, asmeasured by the central velocity dispersion σ0,although with rather small slopes as regards J-H and J-K. For the Pecsubsample, the V-J and V-K colours behave as UBV and line-indices: partof the objects show blue residuals from the appropriatecolour-σ0 regression, which is evidence of a youngerpopulation mixed with the ``normal'' one traced by the Nop regressions;the other shows no deviations from the Nop subsample. The distinctionamong Pec objects between the YP family (NGC 2865 type), and the NP one(NGC 3923 type), is statistically supported, and generally confirmed inspecific cases.Based in part on observations collected at the Observatoire deHaute-Provence.Table 4 is only available in electonic form at the CDS via anonymous ftpto cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/819

Bubbles in planetary nebulae and clusters of galaxies: instabilities at bubble' fronts
I study the stability of off-center low-density more or less spherical(fat) bubbles in clusters of galaxies and in planetary nebulae (PNs) toRayleigh-Taylor (RT) instability. As the bubble expands and decelerates,the interface between the low-density bubble's interior and the denseshell formed from the accreted ambient medium is RT-stable. If, however,in a specific direction the density decreases such that this segment isaccelerated by the pressure inside the bubble, then this acceleratedregion is RT-unstable. The outermost region, relative to the center ofthe system, is the most likely to become unstable because there thedensity gradient is the steepest. Using simple analytical analysis, Ifind that off-center fat bubbles in PNs are much less stable than inclusters. In PNs bubbles become unstable when they are very smallrelative to their distance from the center; they can be stabilizedsomewhat if the mass loss rate from the stellar progenitor decreases fora time, such that the negative density gradient is much shallower. Inclusters fat bubbles become unstable when their size is comparable totheir distance from the center. I discuss some implications of thisinstability in clusters and in PNs.

Measuring shapes of galaxy images - II. Morphology of 2MASS galaxies
We study a sample of 112 galaxies of various Hubble types imaged in theTwo Micron All Sky Survey (2MASS) in the near-infrared (NIR; 1-2 μm)J, H and Ks bands. The sample contains (optically classified)32 ellipticals, 16 lenticulars and 64 spirals acquired from the 2MASSExtended Source Catalogue (XSC).We use a set of non-parametric shape measures constructed from theMinkowski functionals (MFs) for galaxy shape analysis. We useellipticity (ɛ) and orientation angle (Φ) as shapediagnostics. With these parameters as functions of area within theisophotal contour, we note that the NIR elliptical galaxies withɛ > 0.2 show a trend of being centrally spherical andincreasingly flattened towards the edge, a trend similar to images inoptical wavelengths. The highly flattened elliptical galaxies showstrong change in ellipticity between the centre and the edge. Thelenticular galaxies show morphological properties resembling eitherellipticals or disc galaxies. Our analysis shows that almost half of thespiral galaxies appear to have bar-like features while the rest arelikely to be non-barred. Our results also indicate that almost one-thirdof spiral galaxies have optically hidden bars.The isophotal twist noted in the orientations of elliptical galaxiesdecreases with the flattening of these galaxies, indicating that twistand flattening are also anticorrelated in the NIR, as found in opticalwavelengths. The orientations of NIR lenticular and spiral galaxies showa wide range of twists.

Nuclear activity and the dynamics of elliptical galaxies
This Letter looks for any correlation between the internal dynamics ofelliptical galaxies and the relatively mild nuclear activity found inmany such systems. We show that there is such a relation in the sensethat the active ellipticals tend to be significantly less rotationallysupported than their inactive cousins. The correlation can partly berelated to the galaxies' luminosities: the brightest galaxies tend to bemore active and less rotationally supported. However, even at lowerluminosities the active and inactive galaxies seem to havesystematically different dynamics. This variation suggests that thereare significant large-scale structural differences between active andinactive elliptical galaxies, and hence that the existence of both typesof system cannot just be the result of random sporadic nuclear activity.

The Ultraluminous X-Ray Source Population from the Chandra Archive of Galaxies
One hundred fifty-four discrete non-nuclear ultraluminous X-ray (ULX)sources, with spectroscopically determined intrinsic X-ray luminositiesgreater than 1039 ergs s-1, are identified in 82galaxies observed with Chandra's Advanced CCD Imaging Spectrometer.Source positions, X-ray luminosities, and spectral and timingcharacteristics are tabulated. Statistical comparisons between theseX-ray properties and those of the weaker discrete sources in the samefields (mainly neutron star and stellar-mass black hole binaries) aremade. Sources above ~1038 ergs s-1 display similarspatial, spectral, color, and variability distributions. In particular,there is no compelling evidence in the sample for a new and distinctclass of X-ray object such as the intermediate-mass black holes.Eighty-three percent of ULX candidates have spectra that can bedescribed as absorbed power laws with index <Γ>=1.74 andcolumn density =2.24×1021cm-2, or ~5 times the average Galactic column. About 20% ofthe ULXs have much steeper indices indicative of a soft, and likelythermal, spectrum. The locations of ULXs in their host galaxies arestrongly peaked toward their galaxy centers. The deprojected radialdistribution of the ULX candidates is somewhat steeper than anexponential disk, indistinguishable from that of the weaker sources.About 5%-15% of ULX candidates are variable during the Chandraobservations (which average 39.5 ks). Comparison of the cumulative X-rayluminosity functions of the ULXs to Chandra Deep Field results suggests~25% of the sources may be background objects, including 14% of the ULXcandidates in the sample of spiral galaxies and 44% of those inelliptical galaxies, implying the elliptical galaxy ULX population isseverely compromised by background active galactic nuclei. Correlationswith host galaxy properties confirm the number and total X-rayluminosity of the ULXs are associated with recent star formation andwith galaxy merging and interactions. The preponderance of ULXs instar-forming galaxies as well as their similarities to less-luminoussources suggest they originate in a young but short-lived populationsuch as the high-mass X-ray binaries with a smaller contribution (basedon spectral slope) from recent supernovae. The number of ULXs inelliptical galaxies scales with host galaxy mass and can be explainedmost simply as the high-luminosity end of the low-mass X-ray binarypopulation.

Cold Dust in Early-Type Galaxies. I. Observations
We describe far-infrared observations of early-type galaxies selectedfrom the Infrared Space Observatory (ISO) archive. This ratherinhomogeneous sample includes 39 giant elliptical galaxies and 14 S0 (orlater) galaxies. These galaxies were observed with the array photometerPHOT on-board the ISO satellite using a variety of different observingmodes-sparse maps, mini-maps, oversampled maps, and singlepointings-each of which requires different and often rather elaboratephotometric reduction procedures. The ISO background data agree wellwith the COBE-DIRBE results to which we have renormalized ourcalibrations. As a further check, the ISO fluxes from galaxies at 60 and100 μm agree very well with those previously observed with IRAS atthese wavelengths. The spatial resolution of ISO is several timesgreater than that of IRAS, and the ISO observations extend out to 200μm, which views a significantly greater mass of colder dust notassessable to IRAS. Most of the galaxies are essentially point sourcesat ISO resolution, but a few are clearly extended at FIR wavelengthswith image sizes that increase with FIR wavelength. The integratedfar-infrared luminosities do not correlate with optical luminosities,suggesting that the dust may have an external, merger-related origin. Ingeneral, the far-infrared spectral energy distributions can be modeledwith dust at two temperatures, ~43 and ~20 K, which probably representlimits of a continuous range of temperatures. The colder dust componentdominates the total mass of dust, 106-107Msolar, which is typically more than 10 times larger than thedust masses previously estimated for the same galaxies using IRASobservations. For S0 galaxies we find that the optically normalizedfar-infrared luminosity LFIR/LB correlatesstrongly with the mid-infrared luminosityL15μm/LB, but that correlation is weaker forelliptical galaxies.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, theNetherlands, and United Kingdom) and with the participation of ISAS andNASA.

Companions to Isolated Elliptical Galaxies: Revisiting the Bothun-Sullivan Sample
We investigate the number of physical companion galaxies for a sample ofrelatively isolated elliptical galaxies. The NASA/IPAC ExtragalacticDatabase (NED) has been used to reinvestigate the incidence of satellitegalaxies for a sample of 34 elliptical galaxies, first investigated byBothun & Sullivan using a visual inspection of Palomar Sky Surveyprints out to a projected search radius of 75 kpc. We have repeatedtheir original investigation using data cataloged in NED. Nine of theseelliptical galaxies appear to be members of galaxy clusters; theremaining sample of 25 galaxies reveals an average of +1.0+/-0.5apparent companions per galaxy within a projected search radius of 75kpc, in excess of two equal-area comparison regions displaced by 150-300kpc. This is significantly larger than the +0.12+/-0.42companions/galaxy found by Bothun & Sullivan for the identicalsample. Making use of published radial velocities, mostly availablesince the completion of the Bothun-Sullivan study, identifies thephysical companions and gives a somewhat lower estimate of +0.4companions per elliptical galaxy. This is still 3 times larger than theoriginal statistical study, but given the incomplete and heterogeneousnature of the survey redshifts in NED, it still yields a firm lowerlimit on the number (and identity) of physical companions. An expansionof the search radius out to 300 kpc, again restricted to sampling onlythose objects with known redshifts in NED, gives another lower limit of4.5 physical companions per galaxy. (Excluding five elliptical galaxiesin the Fornax Cluster, this average drops to 3.5 companions perelliptical.) These physical companions are individually identified andlisted, and the ensemble-averaged radial density distribution of theseassociated galaxies is presented. For the ensemble, the radial densitydistribution is found to have a falloff consistent withρ~R-0.5 out to approximately 150 kpc. For non-FornaxCluster companions the falloff continues out to the 300 kpc limit of thesurvey. The velocity dispersion of these companions is found to reach amaximum of 350 km s-1 at around 120 kpc, after which theyfall at a rate consistent with Keplerian falloff. This falloff may thenindicate the detection of a cut-off in the mass-density distribution inthe elliptical galaxies' dark matter halo at ~100 kpc.

The Lack of Very Ultraluminous X-Ray Sources in Early-Type Galaxies
We have searched for ultraluminous X-ray sources (ULXs) in a sample of28 elliptical and S0 galaxies observed with Chandra. We find that thenumber of X-ray sources detected at a flux level that would correspondto a 0.3-10 keV X-ray luminosity of ~2×1039 ergss-1 or greater (for which we have used the designation veryultraluminous X-ray sources [VULXs]) at the distance of each galaxy isequal to the number of expected foreground/background objects. Inaddition, the VULXs are uniformly distributed over the Chandra field ofview rather than distributed like the optical light of the galaxies,strengthening the argument that the high-flux sources are unassociatedwith the galaxies. We have also taken the VULX candidate list of Colbertand Ptak and determined the spatial distribution of VULXs in early-typegalaxies and late-type galaxies separately. While the spiral galaxyVULXs are clearly concentrated toward the centers of the galaxies, theearly-type galaxy VULXs are distributed randomly over the ROSAT HRIfield of view, again indicating that they are not associated with thegalaxies themselves. We conclude that with the exception of two rarehigh-luminosity objects within globular clusters of the ellipticalgalaxy NGC 1399, VULXs are generally not found within old stellarsystems. However, we do find a significant population of sources withluminosities of (1-2)×1039 ergs s-1 thatreside within the sample galaxies that can be explained by accretiononto 10-20 Msolar black holes. Given our results, we proposethat ULXs be defined as X-ray sources with LX(0.3-10keV)>2×1039 ergs s-1.

A New Nonparametric Approach to Galaxy Morphological Classification
We present two new nonparametric methods for quantifying galaxymorphology: the relative distribution of the galaxy pixel flux values(the Gini coefficient or G) and the second-order moment of the brightest20% of the galaxy's flux (M20). We test the robustness of Gand M20 to decreasing signal-to-noise ratio (S/N) and spatialresolution and find that both measures are reliable to within 10% forimages with average S/N per pixel greater than 2 and resolutions betterthan 1000 and 500 pc, respectively. We have measured G andM20, as well as concentration (C), asymmetry (A), andclumpiness (S) in the rest-frame near-ultraviolet/optical wavelengthsfor 148 bright local ``normal'' Hubble-type galaxies (E-Sd) galaxies, 22dwarf irregulars, and 73 0.05

Peculiarities and populations in elliptical galaxies. I. An old question revisited
Morphological peculiarities, as defined from isophote asymmetries andnumber of detected shells, jets or similar features, have been estimatedin a sample of 117 E classified galaxies, and qualified by an ad hocΣ2 index. The overall frequency of ``peculiar'' objects(Pec subsample) is 32.5%. It decreases with the cosmic density of theenvironment, being minimal for the Virgo cluster, the densestenvironment in the sampled volume. This environmental effect is strongerfor galaxies with relatively large Σ2.The Pec subsample objects are compared with ``normal'' objects (Nopsubsample) as regards their basic properties. Firstly, theysystematically deviate from the Fundamental Plane and the Faber-Jacksonrelation derived for the Nop subsample, being too bright for their mass.Secondly, the dust content of galaxies, as estimated from IRAS fluxes,are similar in both subsamples. Third, the same is true of the frequencyof Kinematically Distinct cores (KDC), suggesting that KDC andmorphological peculiarities do not result from the same events in thehistory of E-galaxies.Using the Nop sample alone, we obtain very tight reference relationsbetween stellar population indicators (U-B, B-V, B-R, V-I,Mg2, Hβ, , Mgb) and the central velocitydispersion σ0. The discussion of the residuals of theserelations allows us to classify the Pec galaxies in two families i.e.the YP or NGC 2865 family, and the NP or NGC 3923 one. Galaxies in thefirst group show consistent evidence for a younger stellar populationmixed with the old one, in agreement with classical results (Schweizeret al. \cite{Schweizer1990}; Schweizer & Seitzer\cite{Schweizer1992}). The second group, however, has ``normal``, orreddish, populations. It is remarkable that a fraction (circa 40%) ofmorphologically perturbed objects do not display any signature of ayoung population, either because the event responsible for thepecularity is too ancient, or because it did not produce significantstar formation (or eventually that the young sub-population has highmetallicity).A preliminary attempt is made to interpret the populations of Pecobjects by combining a young Single Stellar Population with a Nopgalaxy, with only limited success, perhaps largely due to uncertaintiesin the SSP indices used.Based in part on observations collected at the Observatoire deHaute-Provence.Figures \ref{fig1}-\ref{fig3} are only available in electronic form athttp://www.edpsciences.orgTable 10 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/833

UV and FIR selected samples of galaxies in the local Universe. Dust extinction and star formation rates
We have built two samples of galaxies selected at 0.2 μm (hereafterUV) and 60 μm (hereafter FIR) covering a sky area of 35.36deg2. The UV selected sample contains 25 galaxies brighterthan AB0.2=17. All of them, but one elliptical, are detectedat 60 μm with a flux density larger or equal to 0.2 Jy. The UV countsare significantly lower than the Euclidean extrapolation towardsbrighter fluxes of previous determinations. The FIR selected samplecontains 42 galaxies brighter than f60=0.6 Jy. Except fourgalaxies, all of them have a UV counterpart at the limiting magnitudeAB0.2=20.3 mag. The mean extinction derived from the analysisof the FIR to UV flux ratio is ˜1 mag for the UV selected sample and˜2 mag for the FIR selected one. For each sample we compare severalindicators of the recent star formation rate (SFR) based on the FIRand/or the UV emissions. We find linear relationships with slopes closeto unity between the different SFR indicator, which means that, over thewhole converting offset. Various absolute calibrations for both samplesare discussed in this paper. A positive correlation between extinctionand SFR is found when both samples are considered together although witha considerable scatter. A similar result is obtained when using the SFRnormalized to the optical surface of the galaxies.Tables 3, 4 and Fig. 1 are only available in electronic form athttp://www.edpsciences.org

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Dragon
Right ascension:12h08m06.30s
Declination:+65°10'26.0"
Aparent dimensions:5.888′ × 4.571′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4125
HYPERLEDA-IPGC 38524

→ Request more catalogs and designations from VizieR