Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 2150


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

COLA. II. Radio and Spectroscopic Diagnostics of Nuclear Activity in Galaxies
We present optical spectroscopic observations of 93 galaxies taken fromthe infrared-selected COLA (compact objects in low-power AGNs) sample.These are all galaxies for which we have previously obtainedlow-resolution radio observations and high-resolution (<0.05")Australian Long Baseline Array snapshots. The sample spans the range offar-IR luminosities from normal galaxies to luminous infrared galaxiesand contains a significant number of galaxies involved in galaxy-galaxyinteractions. Of the galaxies observed, 78 (84%) exhibit emission linesindicating that they are either AGNs or actively forming stars(starburst galaxies). Using a newly developed, theoretically based,optical emission line scheme to classify the spectra, we find that 15%of the emission-line galaxies are Seyfert galaxies, 77% are starbursts,and the rest are either borderline AGN/starburst or show ambiguouscharacteristics. We find little evidence for an increase in the fractionof AGNs in the sample as a function of far-IR (FIR) luminosity, incontrast to previous studies, but our sample covers only a small rangein infrared luminosity(1010.5Lsolar<=LFIR<=1011.7 Lsolar), and thus a weak trend may be masked. Instead,as the infrared luminosity increases, so does the fraction of metal-richstarbursts, objects that on more traditional diagnostic diagrams wouldhave been classified as weak, low-ionization, narrow emission lineregions. As a whole the Seyfert galaxies exhibit a small, butstatistically significant, radio excess on the radio-FIR correlationcompared to the galaxies classified as starbursts. Compact (<0.05")radio cores are detected in 55% of the Seyfert galaxies, and thesegalaxies exhibit a significantly larger radio excess than the Seyfertgalaxies in which compact cores were not detected. Our results indicatethat there may be two distinct populations of Seyfert galaxies,``radio-excess'' Seyfert galaxies, which exhibit extended radiostructures and compact radio cores, and ``radio-quiet'' Seyfertgalaxies, in which the majority of the radio emission can be attributedto star formation in the host galaxy. No significant difference is seenbetween the IR and optical spectroscopic properties of Seyfert galaxieswith and without radio cores.

First Results from the COLA Project: The Radio-Far-Infrared Correlation and Compact Radio Cores in Southern COLA Galaxies
We present the first results from the COLA (compact objects in low-powerAGNs) project, which aims to determine the relationship between onefacet of AGN activity, the compact radio core, and star formation in thecircumnuclear region of the host galaxy. This will be accomplished bythe comparison of the multiwavelength properties of a sample of AGNswith compact radio cores to those of a sample of AGNs without compactcores and a matched sample of galaxies without AGNs. In this paper wediscuss the selection criteria for our galaxy samples and present theinitial radio observations of the 107 southern(δ<0deg) galaxies in our sample. Low-resolution ATCAobservations at 4.8, 2.5, and 1.4 GHz and high-resolution,single-baseline snapshots at 2.3 GHz with the Australian Long BaselineArray (LBA) are presented. We find that for the majority of the galaxiesin our sample, the radio luminosity is correlated with the far-infrared(FIR) luminosity. However, a small number of galaxies exhibit a radioexcess causing them to depart from the FIR-radio correlation. Compactradio cores are detected at fluxes greater than 1.5 mJy in nine of the105 galaxies observed with the LBA. The majority (8/9) of these galaxiesexhibit a radio excess, and 50% (7/14) of the galaxies that lie abovethe radio-FIR correlation by more than 1 σ have compact radiocores. The emission from the compact cores is too weak to account forthis radio excess, implying that there are radio structures associatedwith the compact cores that extend farther than the 0.05" resolution(corresponding to a linear scale 11-22 pc) of the LBA. There is noevidence that the radio luminosity of the compact cores is correlatedwith the FIR galaxy luminosity, indicating that the core contributeslittle to the overall FIR emission of the galaxy. The galaxies withcompact cores tend to be classified optically as AGNs, with two-thirds(6/9) exhibiting Seyfert-like optical emission line ratios, and theremaining galaxies classified either as composite objects (2/9) orstarburst (1/9). The galaxies classified optically as AGNs also exhibitthe largest radio excesses, and we therefore conclude that a large radioexcess on the radio-FIR correlation is a strong indication of an AGNwith a compact radio core.

A Catalog of H I-Selected Galaxies from the South Celestial Cap Region of Sky
The first deep catalog of the H I Parkes All Sky Survey (HIPASS) ispresented, covering the south celestial cap (SCC) region. The SCC areais ~2400 deg2 and covers δ<-62°. The average rmsnoise for the survey is 13 mJy beam-1. Five hundredthirty-six galaxies have been cataloged according to their neutralhydrogen content, including 114 galaxies that have no previous catalogedoptical counterpart. This is the largest sample of galaxies from a blindH I survey to date. Most galaxies in optically unobscured regions of skyhave a visible optical counterpart; however, there is a small populationof low-velocity H I clouds without visible optical counterparts whoseorigins and significance are unclear. The rms accuracy of the HIPASSpositions is found to be 1.9′. The H I mass range of galaxiesdetected is from ~106 to ~1011 Msolar.There are a large number of late-type spiral galaxies in the SCC sample(66%), compared with 30% for optically selected galaxies from the sameregion in the NASA Extragalactic Database. The average ratio of H I massto B luminosity of the sample increases according to optical type, from1.8 Msolar/Lsolar for early types to 3.2Msolar/Lsolar for late-type galaxies. The HI-detected galaxies tend to follow the large-scale structure traced bygalaxies found in optical surveys. From the number of galaxies detectedin this region of sky, we predict the full HIPASS catalog will contain~5000 galaxies, to a peak flux density limit of ~39 mJy (3 σ),although this may be a conservative estimate as two large voids arepresent in the region. The H I mass function for this catalog ispresented in a subsequent paper.

MSX, 2MASS, and the LARGE MAGELLANIC CLOUD: A Combined Near- and Mid-Infrared View
The Large Magellanic Cloud (LMC) has been observed by the MidcourseSpace Experiment (MSX) in the mid-infrared and the Two Micron All SkySurvey (2MASS) in the near-infrared. We have performed across-correlation of the 1806 MSX catalog sources and nearly 1.4 million2MASS cataloged point and extended sources and find 1664 matches. Usingthe available color information, we identify a number of stellarpopulations and nebulae, including main-sequence stars, giant stars, redsupergiants, carbon- and oxygen-rich asymptotic giant branch (AGB)stars, planetary nebulae, H II regions, and other dusty objects likelyassociated with early-type stars. A total of 731 of these sources haveno previous identification. We compile a listing of all objects, whichincludes photometry and astrometry. The 8.3 μm MSX sensitivity is thelimiting factor for object detection: only the brighter red objects,specifically the red supergiants, AGB stars, planetary nebulae, and H IIregions, are detected in the LMC. The remaining objects are likely inthe Galactic foreground. The spatial distribution of the infrared LMCsources may contribute to understanding stellar formation and evolutionand the overall galactic evolution. We demonstrate that a combined mid-and near-infrared photometric baseline provides a powerful means ofidentifying new objects in the LMC for future ground-based andspace-based follow-up observations.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

ROSAT All-Sky Survey observations of IRAS galaxies. I. Soft X-ray and far-infrared properties
The 120 000 X-ray sources detected in the RASS II processing of theROSAT All-Sky Survey are correlated with the 14 315 IRAS galaxiesselected from the IRAS Point Source Catalogue: 372 IRAS galaxies showX-ray emission within a distance of 100 arcsec from the infraredposition. By inspecting the structure of the X-ray emission in overlayson optical images we quantify the likelihood that the X-rays originatefrom the IRAS galaxy. For 197 objects the soft X-ray emission is verylikely associated with the IRAS galaxy. Their soft X-ray properties aredetermined and compared with their far-infrared emission. X-ray contourplots overlaid on Palomar Digitized Sky Survey images are given for eachof the 372 potential identifications. All images and tables displayedhere are also available in electronic form.

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

The Catalog of Southern Ringed Galaxies
The Catalog of Southern Ringed Galaxies (CSRG) is a comprehensivecompilation of diameters, axis ratios, relative bar position angles, andmorphologies of inner and outer rings, pseudorings, and lenses in 3692galaxies south of declination -17 deg. The purpose of the catalog is toevaluate the idea that these ring phenomena are related to orbitalresonances with a bar or oval in galaxy potentials. The catalog is basedon visual inspection of most of the 606 fields of the Science ResearchCouncil (SRC) IIIa-J southern sky survey, with the ESO-B, ESO-R, andPalomar Sky surveys used as auxiliaries when needed for overexposed coreregions. The catalog is most complete for SRC fields 1-303 (mostly southof declination -42 deg). In addition to ringed galaxies, a list of 859mostly nonringed galaxies intended for comparison with other catalogs isprovided. Other findings from the CSRG that are not based on statisticsare the identification of intrinsic bar/ring misalignment; bars whichunderfill inner rings; dimpling of R'1pseudorings; pointy, rectangular, or hexagonal inner or outer ringshapes; a peculiar polar-ring-related system; and other extreme examplesof spiral structure and ring morphology.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

A southern OH megamaser survey
A search for OH emission from luminous IRAS galaxies with the Parkestelescope has been completed. Two new megamasers were found out of 122galaxies searched. Based on these and previous searches we discuss therequired conditions for OH megamaser emission, and derive the set ofvariables necessary to explain the observed correlations for megamasers.New redshifts for 47 of the candidates were obtained with the 1.9-m MtStromlo telescope and the Anglo-Australian Telescope. Detailedspectroscopy of two of the megamaser galaxies shows them to havelow-ionization emission-line nuclei, suggesting the presence of highlyobscured active nuclei. Radio continuum measurements have also been madeof known megamaser galaxies with the Compact Array of the AustraliaTelescope. The radio-infrared relation is tightly defined for megamasergalaxies. As a class they have somewhat lower 5-GHz to 60-micron fluxdensity ratios than spiral galaxies, consistent with megamasers beingfound in young starburst galaxies.

Models for infrared emission from IRAS galaxies
The far-infrared spectra of galaxies detected in four wavelength bandsby IRAS have been modeled in terms of a cool disk component, a warmerstarburst component, and a Seyfert component peaking at 25 microns.Although the models are found to fit the observed spectra of non-Seyfertand several Seyfert galaxies, a more complex geometry for the dustdistribution is indicated for NGC 1068 and many other Seyfert galaxies.In some cases, the dust in the narrow-line region has a nonsphericallysymmetric geometry.

Southern Galaxy Catalogue.
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Dorade
Right ascension:05h55m47.50s
Declination:-69°33'41.0"
Aparent dimensions:1.148′ × 0.676′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 2150
HYPERLEDA-IPGC 18097

→ Request more catalogs and designations from VizieR