Principal     Comenzar     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Prensa     Login  

NGC 5433


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

The evolution of actively star-forming galaxies in the mid-infrared
In this paper we analyze the evolution of actively star-forming galaxiesin the mid-infrared (MIR). This spectral region, characterized bycontinuum emission by hot dust and by the presence of strong emissionfeatures generally ascribed to polycyclic aromatic hydrocarbon (PAH)molecules, is the most strongly affected by the heating processesassociated with star formation and/or active galactic nuclei (AGNs).Following the detailed observational characterization of galaxies in theMIR by the Infrared Space Observatory (ISO), we have updated themodelling of this spectral region in our spectrophotometric modelGRASIL. In the diffuse component we have updated the treatment of PAHsaccording to the model by Li & Draine. As for the dense phase of theinterstellar medium associated with the star-forming regions, themolecular clouds, we strongly decrease the abundance of PAHs as comparedto that in the cirrus, based on the observational evidence of the lackor weakness of PAH bands close to the newly formed stars, possibly dueto the destruction of the molecules in strong ultraviolet fields. Therobustness of the model is checked by fitting near-infrared to radiobroad-band spectra and the corresponding detailed MIR spectra of a largesample of galaxies, at once. With this model, we have analyzed thelarger sample of actively star-forming galaxies by Dale et al. We showthat the observed trends of galaxies in the ISO-IRAS-radio colour-colourplots can be interpreted in terms of the different evolutionary phasesof star formation activity, and the consequent different dominance inthe spectral energy distribution of the diffuse or dense phase of theISM. We find that the observed colours indicate a surprising homogeneityof the starburst phenomenon, allowing only a limited variation of themost important physical parameters, such as the optical depth of themolecular clouds, the time-scale of the escape of young stars from theirfor mation sites, and the gas consumption time-scale. In this paper wedo not attempt to reproduce the far-infrared coolest region in thecolour-colour plots, as we concentrate on models meant to reproduceactive star-forming galaxies, but we discuss possible requirements of amore complex modelling for the coldest objects.

Simulating the Spitzer Mid-Infrared Color-Color Diagrams
We use a simple parameterization of the mid-IR spectra of a wide rangeof galaxy types in order to predict their distribution in the InfraredArray Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and MultibandPhotometer for Spitzer 24 μm color-color diagrams. We distinguishthree basic spectral types by the energetically dominant component inthe 3-12 μm regime: stellar-dominated, polycyclic aromatichydrocarbon (PAH)-dominated, and continuum-dominated. We use a Markovchain Monte Carlo approach to arrive at a more systematic and robustrepresentation of the mid-IR spectra of galaxies than do moretraditional approaches. We find that IRAC color-color plots are wellsuited to distinguishing the above spectral types, while the addition of24 μm data allows us to suggest practical three-color cuts thatpreferentially select higher redshift sources of a specific type. Wecompare our simulations with the color-color plot obtained by theSpitzer First Look Survey and find reasonable agreement. Lastly, wediscuss other applications as well as future directions for this work.

HI in NGC 5433 and its environment: high-latitude emission in a small galaxy group
We present HI synthesis maps of the edge-on starburst NGC 5433 and itsenvironment, obtained with the Very Large Array in its C and Dconfigurations. The observations and spectral model residuals of themain disc emission in NGC 5433 reveal three extraplanar features. Weassociate two of these features with coherent extraplanar extensionsacross multiple spectral channels in our data, including a complete loopin position-velocity space. Interpreting the latter as an expandingshell we derive a corresponding input energy of 2 ×1054 erg, comparable to that for the largest supershellsfound in the Galaxy and those in other edge-on systems. NGC 5433 is in aricher environment than previously thought. We confirm that KUG 1359+326is a physical companion to NGC 5433 and find two new faint companions,both with Minnesota Automated Plate Scanner identifications, which welabel SIS-1 and SIS-2. Including the more distant IC 4357, NGC 5433 isthe dominant member of a group of at least five galaxies, spanning over750 kpc in a filamentary structure. A variety of evidence suggests thatinteractions are occurring in this group. While a number of underlyingmechanisms are consistent with the morphology of the high-latitudefeatures in NGC 5433, we argue that environmental effects may play arole in their generation.

The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients
The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.

Revised masses of dust and gas of SCUBA Local Universe Survey far-infrared bright galaxies based on a recent CO survey
Recent CO measurements of an essentially complete subsample of galaxiesfrom the SCUBA Local Universe Survey (SLUGS) are used to examine theirimplications for dust and gas masses in this sample. Estimates of dustmasses are affected by a contribution to the SCUBA brightnessmeasurements by CO(3-2) emission, and molecular gas masses by the use ofa modified value of the CO-to-H2 conversion factor X. Theaverage dust mass is reduced by 25-38 per cent, which has no bearing onearlier conclusions concerning the shape of the dust mass luminosityfunction derived from the SLUGS. The value of X found from the COsurvey, when applied together with the reduction in dust masses, leadsto lower estimates for the mean gas-to-dust mass ratios, where the gasincludes both H2 and H I. For the CO sample, the mean globalratio is reduced from approximately 430 to about 320-360, but is furtherreduced to values near 50 when applied to the nuclear regions relevantto the CO observations. We discuss these results and suggest that thedifferences between the nuclear and outer regions may simply reflectdifferences in metallicity or the existence of considerable amounts ofunobserved cold dust in the outer regions of these galaxies.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

Cold dust and molecular gas towards the centers of Magellanic type galaxies and irregulars. I. The data
We present 1300 μm continuum emission measurements and observationsof the 12CO (1-0) and (2-1) transition towards the centers of64 Magellanic type galaxies (Sdm/Sm) and irregulars (Im/I0/Irr). Thesources are selected to have IRAS flux densities S100 μm≥1000 mJy and optical diameters mainly below 180 arcsec. We wereable to detect 12CO towards 41 and the continuum emissiontowards 28 galaxies. In addition, we obtained the corresponding data fora set of 6 complementary galaxies of different morphological type.Based on observations collected at ESO, La Silla, Chile and IRAM, PicoVeleta, Spain.The full version of Figs. \ref{spec1.fig} and \ref{spec2.fig} is onlyavailable in electronic form at http://www.edpsciences.org

CO Molecular Gas in Infrared-luminous Galaxies
We present the first statistical survey of the properties of the12CO(1-0) and 12CO(3-2) line emission from thenuclei of a nearly complete subsample of 60 infrared (IR) luminousgalaxies selected from SCUBA Local Universe Galaxy Survey (SLUGS). Thissubsample is flux limited at S60μm>=5.24 Jy with far-IR(FIR) luminosities mostly at LFIR>1010Lsolar. We compare the emission line strengths of12CO(1-0) and (3-2) transitions at a common resolution of~15". The measured 12CO(3-2) to (1-0) line intensity ratiosr31 vary from 0.22 to 1.72, with a mean value of 0.66 for thesources observed, indicating a large spread of the degree of excitationof CO in the sample. These CO data, together with a wide range of dataat different wavelengths obtained from the literature, allow us to studythe relationship between the CO excitation conditions and the physicalproperties of gas/dust and star formation in the central regions ofgalaxies. Our analysis shows that there is a nonlinear relation betweenCO and FIR luminosities, such that their ratioLCO/LFIR decreases linearly with increasingLFIR. This behavior was found to be consistent with theSchmidt law relating star formation rate to molecular gas content, withan index N=1.4+/-0.3. We also find a possible dependence of the degreeof CO gas excitation on the efficiency of star-forming activity. Usingthe large velocity gradient (LVG) approximation to model the observeddata, we investigate the CO-to-H2 conversion factor X for theSLUGS sample. The results show that the mean value of X for the SLUGSsample is lower by a factor of 10 compared to the conventional valuederived for the Galaxy, if we assume the abundance of CO relative toH2, ZCO=10-4. For a subset of 12galaxies with H I maps, we derive a mean total face-on surface densityof H2+HI of about 42 Msolar pc-2 withinabout 2 kpc of the nucleus. This value is intermediate between that ingalaxies like our own and those with strong star formation.

Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features
We present ISOPHOT spectra of the regions 2.5-4.9 μm and 5.8-11.6μm for a sample of 45 disk galaxies from the US Infrared SpaceObservatory Key Project on Normal Galaxies. The galaxies were selectedto span the range in global properties of normal, star-forming diskgalaxies in the local universe. The spectra can be decomposed into threespectral components: (1) continuum emission from stellar photospheres,which dominates the near-infrared (NIR; 2.5-4.9 μm) spectral region;(2) a weak NIR excess continuum, which has a color temperature of~103 K, carries a luminosity of a few percent of the totalfar-infrared (FIR) dust luminosity LFIR and most likelyarises from the interstellar medium (ISM); and (3) the well-known broademission features at 6.2, 7.7, 8.6, and 11.3 μm, which are generallyattributed to aromatic carbon particles. These aromatic features inemission (AFEs) dominate the mid-infrared (MIR; 5.8-11.6 μm) part ofthe spectrum and resemble the so-called type A spectra observed in manynonstellar sources and the diffuse ISM in our own Galaxy. The fewnotable exceptions include NGC 4418, where a dust continuum replaces theAFEs in MIR, and NGC 1569, where the AFEs are weak and the strongestemission feature is [S IV] 10.51 μm. The relative strengths of theAFEs vary by 15%-25% among the galaxies. However, little correlation isseen between these variations and either IRAS 60 μm/100 μm fluxdensity ratio R(60/100) or the FIR/blue luminosity ratioLFIR/LB, two widely used indicators of the currentstar formation activity, suggesting that the observed variations are nota consequence of the radiation field differences among the galaxies. Wedemonstrate that the NIR excess continuum and AFE emission arecorrelated, suggesting that they are produced by similar mechanisms andsimilar (or the same) material. On the other hand, as the current starformation activity increases, the overall strengths of the AFEs and theNIR excess continuum drop significantly with respect to that of the FIRemission from large dust grains. In particular, the summed luminosity ofthe AFEs falls from ~0.2 LFIR for the most ``IR-quiescent''galaxies to ~0.1 LFIR for the most ``IR-active'' galaxies.This is likely a consequence of the preferential destruction in intenseradiation fields of the small carriers responsible for the NIR/AFEemission.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries, France, Germany, theNetherlands, and the United Kingdom) and with the participation of ISASand NASA.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

The distribution of atomic gas and dust in nearby galaxies - I. Presentation of matched-resolution VLA H I and SCUBA 850-μm maps
We present matched-resolution VLA HI and SCUBA 850-μm maps of 20IRAS-bright galaxies. Of the galaxies observed, two were not detected inHI and two were detected in absorption. The HI distributions of thegalaxies have a range of morphologies. Some of the systems appear HIdeficient in the central regions which could be due to a high conversionrate of HI into molecules or HI absorption. In contrast to the HI, the850-μm emission has a smooth distribution which is concentratedtowards the optical centre of each galaxy. We also find evidence for850-μm emission extending to the periphery of the optical disc insome of the galaxies. Finally, we note that the relative lack of850-μm emission when compared with HI does not necessarily mean thatthe atomic gas and dust do not have similar mass distributions.

Hot dust in normal star-forming galaxies: JHKL' photometry of the ISO Key Project sample
We present JHK and 3.8 mu m (L') photometry of 26 galaxies in theInfrared Space Observatory (ISO) Normal Galaxy Key Project (KP) sampleand of seven normal ellipticals with the aim of investigating the originof the 4 mu m emission. The majority of the KP galaxies, and all theellipticals, have K-L<~ 1.0, consistent with stellar photospheresplus moderate dust extinction. Ten of the 26 KP galaxies have K-L>~1.0, corresponding to a flat or rising 4 mu m continuum, consistent withsignificant emission from hot dust at 600-1000 K. K-L is anticorrelatedwith ISO flux ratio F6.75/F15, weakly correlatedwith line ratio [O I]/[C II], but not with [C II]/FIR or IRAS ratioF60/F100. Photodissociation-region models forthese galaxies show that the hot dust responsible for red K-L resides inregions of high pressure and intense far-ultraviolet radiation field.Taken together, these results suggest that star formation in normalstar-forming galaxies can assume two basic forms: an ``active'',relatively rare, mode characterized by hot dust, suppressed AromaticFeatures in Emission (AFEs), high pressure, and intense radiation field;and the more common ``passive'' mode that occurs under more quiescentphysical conditions, with AFEs, and without hot dust. The occurrence ofthese modes appears to only weakly depend on the star-formation rate perunit area. Passive star formation over large scales makes up the bulk ofstar-forming activity locally, while the ``active'' regime may dominateat high redshifts. Based on data obtained at TIRGO, Gornergrat,Switzerland.

Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium
The most important cooling lines of the neutral interstellar medium(ISM) lie in the far-infrared (FIR). We present measurements by theInfrared Space Observatory Long Wavelength Spectrometer of seven linesfrom neutral and ionized ISM of 60 normal, star-forming galaxies. Thegalaxy sample spans a range in properties such as morphology, FIR colors(indicating dust temperature), and FIR/blue ratios (indicating starformation activity and optical depth). In two-thirds of the galaxies inthis sample, the [C II] line flux is proportional to FIR dust continuum.The other one-third show a smooth decline inL[CII]/LFIR with increasing Fν(60μm)/Fν(100 μm) and LFIR/LB,spanning a range of a factor of more than 50. Two galaxies at the warmand active extreme of the range haveL[CII]/LFIR<2×10-4 (3 σupper limit). This is due to increased positive grain charge in thewarmer and more active galaxies, which leads to less efficient heatingby photoelectrons from dust grains. The ratio of the two principalphotodissociation region (PDR) cooling linesL[OI]/L[CII] shows a tight correlation withFν(60 μm)/Fν(100 μm), indicating thatboth gas and dust temperatures increase together. We derive atheoretical scaling between [N II] (122 μm) and [C II] from ionizedgas and use it to separate [C II] emission from neutral PDRs and ionizedgas. Comparison of PDR models of Kaufman et al. with observed ratios of(1) L[OI]/L[CII] and(L[CII]+L[OI])/LFIR and (2)L[OI]/LFIR and Fν(60μm)/Fν(100 μm) yields far-UV flux G0 andgas density n. The G0 and n values estimated from the twomethods agree to better than a factor of 2 and 1.5, respectively, inmore than half the sources. The derived G0 and n correlatewith each other, and G0 increases with n asG0~nα, where α~1.4 . We interpret thiscorrelation as arising from Strömgren sphere scalings if much ofthe line and continuum luminosity arises near star-forming regions. Thehigh values of PDR surface temperature (270-900 K) and pressure(6×104-1.5×107 K cm-3)derived also support the view that a significant part of grain and gasheating in the galaxies occurs very close to star-forming regions. Thedifferences in G0 and n from galaxy to galaxy may be due todifferences in the physical properties of the star-forming clouds.Galaxies with higher G0 and n have larger and/or denserstar-forming clouds.

The SCUBA Local Universe Galaxy Survey - I. First measurements of the submillimetre luminosity and dust mass functions
This is the first of a series of papers presenting results from theSCUBA Local Universe Galaxy Survey (SLUGS), the first statistical surveyof the submillimetre properties of the local Universe. As the initialpart of this survey, we have used the SCUBA camera on the James ClerkMaxwell Telescope to observe 104 galaxies from the IRAS Bright GalaxySample. We present here the 850-μm flux measurements. The 60-, 100-,and 850-μm flux densities are well fitted by single-temperature dustspectral energy distributions, with the sample mean and standarddeviation for the best-fitting temperature beingTd=35.6+/-4.9K and for the dust emissivity indexβ=1.3+/-0.2. The dust temperature was found to correlate with60-μm luminosity. The low value of β may simply mean that thesegalaxies contain a significant amount of dust that is colder than thesetemperatures. We have estimated dust masses from the 850-μm fluxesand from the fitted temperature, although if a colder component ataround 20K is present (assuming a β of 2), then the estimated dustmasses are a factor of 1.5-3 too low. We have made the first directmeasurements of the submillimetre luminosity function (LF) and of thedust mass function. Unlike the IRAS 60-μm LF, these are well fittedby Schechter functions. The slope of the 850-μm LF at lowluminosities is steeper than -2, implying that the LF must flatten atluminosities lower than we probe here. We show that extrapolating the60-μm LF to 850μm using a single temperature and β does notreproduce the measured submillimetre LF. A population of `cold' galaxies(Td<25K) emitting strongly at submillimetre wavelengthswould have been excluded from the 60-μm-selected sample. If suchgalaxies do exist, then this estimate of the 850-μm flux is biased(it is underestimated). Whether such a population does exist is unknownat present. We correlate many of the global galaxy properties with theFIR/submillimetre properties. We find that there is a tendency for lessluminous galaxies to contain hotter dust and to have a greater starformation efficiency (cf. Young). The average gas-to-dust ratio for thesample is 581+/-43 (using both the atomic and molecular hydrogen), whichis significantly higher than the Galactic value of 160. We believe thatthis discrepancy is probably due to a `cold dust' component atTd<=20K in our galaxies. There is a surprisingly tightcorrelation between dust mass and the mass of molecular hydrogen,estimated from CO measurements, with an intrinsic scatter of ~=50percent.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

ISO Mid-Infrared Observations of Normal Star-Forming Galaxies: The Key Project Sample
We present mid-infrared maps and preliminary analysis for 61 galaxiesobserved with the ISOCAM instrument aboard the Infrared SpaceObservatory. Many of the general features of galaxies observed atoptical wavelengths-spiral arms, disks, rings, and bright knots ofemission-are also seen in the mid-infrared, except the prominent opticalbulges are absent at 6.75 and 15 μm. In addition, the maps are quitesimilar at 6.75 and 15 μm, except for a few cases where a centralstarburst leads to lower Iν(6.75μm)/Iν(15 μm) ratios in the inner region. We alsopresent infrared flux densities and mid-infrared sizes for thesegalaxies. The mid-infrared color Iν(6.75μm)/Iν(15 μm) shows a distinct trend with thefar-infrared color Iν(60 μm)/Iν(100μm). The quiescent galaxies in our sample [Iν(60μm)/Iν(100 μm)<~0.6] show Iν(6.75μm)/Iν(15 μm) near unity, whereas this ratio dropssignificantly for galaxies with higher global heating intensity levels.Azimuthally averaged surface brightness profiles indicate the extent towhich the mid-infrared flux is centrally concentrated, and provideinformation on the radial dependence of mid-infrared colors. Thegalaxies are mostly well resolved in these maps: almost half of themhave <10% of their flux in the central resolution element. Acomparison of optical and mid-infrared isophotal profiles indicates thatthe flux at 4400 Å near the optical outskirts of the galaxies isapproximately 8 (7) times that at 6.75 μm (15 μm), comparable toobservations of the diffuse quiescent regions of the Milky Way. Thispaper is based on observations with the Infrared Space Observatory(ISO). ISO is an ESA project with instruments funded by ESA memberstates (especially the PI countries: France, Germany, The Netherlands,and the United Kingdom) and with the participation of ISAS and NASA.

High-Resolution Radio Continuum Observations of Edge-on Spiral Galaxies
Radio continuum emission at 20 cm has been observed in a sample of 16edge-on galaxies, using the VLA in its A configuration. These galaxieswere observed recently at lower resolution by Irwin et al., who foundevidence for extraplanar disk-halo features in 15 of the 16 galaxies.Twelve of the galaxies are detected in the new high-resolutionobservations. Of these, only two, which were previously known Seyferts,show convincing evidence for AGNs. For six of the galaxies, we provideimproved positions for the galaxy nuclei. In four galaxies, radiocontinuum loops extending perpendicular to the major axis have beendiscovered, confirming previous conclusions from lower resolutionobservations that extraplanar emission is present, as well as providingfurther evidence that radio ``halos'' consist, at least in part, ofunderlying discrete features. For several galaxies, the resolution issufficient to reveal individual star-forming regions in the disk. Weexamine NGC 3556 in detail since this galaxy has been shown by King& Irwin to display extremely large H I supershells. The estimatedinput energy from supernovae in the brightest radio component of thisgalaxy is insufficient to drive the observed H I supershells. We explorepossible resolutions to this energy deficit.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

High-Latitude Radio Emission in a Sample of Edge-on Spiral Galaxies
We have mapped 16 edge-on galaxies at 20 cm using the Very Large Arrayin its C configuration, and a subset of these galaxies in the Dconfiguration at 6 and/or 20 cm, in a search for extended (>~1 kpc)radio continuum emission above and below the plane. For five galaxies,we could form spectral index, energy, and magnetic field maps (assumingminimum energy). While the galaxies were partly chosen by radio fluxdensity, they span a variety of star formation rates (SFRs), and onlysix might be considered ``starburst'' galaxies. A range of Hubble typeand degree of isolation are also represented. The galaxies largely fallon the FIR-radio continuum correlation. They also display a correlationbetween IR surface brightness and warmth, extending the previouslyobserved relation of Lehnert & Heckman to galaxies with lower starformation rates. We find that all but one galaxy show evidence fornonthermal high-latitude radio continuum emission, suggesting thatcosmic-ray (CR) halos are common in star-forming galaxies. Of these,eight galaxies are new detections. The high-latitude emission is seenover a variety of spatial scales and in discrete and/or smooth features.In some cases, discrete features are seen on large scales, suggestingthat smooth radio halos may consist, in part, of discrete featurescombined with low spatial resolution. In general, the discrete featuresemanate from the disk, but estimates of CR diffusion lengths suggestthat diffusion alone is insufficient to transport the particles to thehigh latitudes seen (>15 kpc in one case). Thus CRs likely diffusethrough low-density regions and/or are assisted by other mechanisms(e.g., winds). We searched for correlations between the prevalence ofhigh-latitude radio emission and a number of other properties, includingthe global SFR, supernova input rate per unit star-forming area, E_A,and environment, and do not find clear correlations with any of theseproperties. A subset of the data allows, at best, for only a weakcorrelation with E_A. Our one nondetection (NGC 4517), however, occursat a threshold level consistent with that found by Dahlem, Lisenfeld,& Golla. The lack of a good correlation with star formationindicators could be the result of the different timescales for starformation processes compared with the duration of the radio emission.Correlations with other properties, such as environment, are moredifficult to assess. However, a few isolated galaxies display strongradio halos, indicating that an interaction is not necessary to producethe extraplanar emission.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

The bar-enhanced star-formation activities in spiral galaxies.
We use the ratio L_FIR_/L_B_ and the IRAS color index S_25_/S_12_ (bothwidely used as indices of relative star formation rates in galaxies) toanalyse subsets (containing no known AGNs or merging/interactinggalaxies) of: (a) the IRAS Bright Galaxy Sample, (b) galaxies from theoptically complete RSA sample which have IRAS detections in all fourbands, and (c) a volume-limited IR-unselected sample. We confirm thatIR-bright barred (SB) galaxies do, on average, have very significantlyhigher values of the FIR-optical and S_25_/S_12_ ratios (and presumably,higher relative star formation rates, SFR) than that do unbarred ones;the effect is most obvious in the IR colors. We also confirm that thesedifferences are confined to early-type (S0/a-Sbc) spirals and are notevident among late-type systems (Sc-Sdm). Unlike others, we see noenhancement of the SFR in weakly-barred (SAB) galaxies. We furtherconfirm that the effect of bars on the SFR is associated with therelative IR luminosity and show that it is detectable only in galaxieswith L_FIR_/L_B_>1/3, suggesting that as soon as they have anyeffect, bars translate their host galaxies into this relativelyIR-luminous group. Conversely, for galaxies with L_FIR_/L_B_ below ~0.1this luminosity ratio is lower among barred than unbarred systems, againconfirming and quantifying an earlier result. Although there is nosimple physical relation between H I content and star formation, astrong correlation of H I content with the presence of bars has beenfound for early-type spirals with L_FIR_/L_B_>1/3. This suggests thatthe availability of fuel is the factor determining just which galaxiesundergo bar-induced starbursts.

The CfA Redshift Survey: Data for the NGP +36 Zone
We have assembled redshifts for a complete sample of 719 galaxies withm_zw_ <= 15.5 in the declination range 32.5^deg^ <= δ <=38.5^deg^ and right ascension range 8^h^ <= α <= 17^h^. Wehave determined morphological types for all galaxies in the magnitudelimited sample by direct inspection of the POSS-O plates. 576 of theredshifts are measurements from Mount Hopkins, and 405 are newredshifts. We also include new redshifts for 77 fainter galaxies in thesame strip.

X-ray study of starburst galaxies.
We present full results of a wide-energy, population study of X-rayemission from a sample of 51 candidate starburst galaxies selected fromthe IRAS Bright Galaxy Sample. Superposed low and high energy X-rayemission from these galaxies in the Einstein IPC and HEAO-1 A2 and A4energy bands, which span 0.5 to 160keV, is detected at the 99.99%confidence level, after allowing for confusion noise in the HEAO-1 data.Above 13keV the confidence level is only 85%. A power-law fit to themean spectral luminosity yields a (photon) index of 1.47+/-0.26. Weconsider and assess likely environments and mechanisms for X-rayemission in starburst galaxies. These include thermal emission frommassive binaries, supernova remnants, and galactic halos, and nonthermalemission resulting from Compton scattering of relativistic electrons bythe far IR and the cosmic microwave background radiation fields. Thecontribution of the population of sources represented by this sample tothe 3-50keV residual cosmic X-ray background is estimated to be at the3-4% level assuming no evolution. This contribution is significantlyhigher if the population evolved moderately.

Global properties of dwarf galaxies. I. Galaxy sample and IRAS infrared flux-densities
We have selected a sample of 278 dwarf galaxies for which at least Bmagnitudes and preferably also optical colour information are available.For those galaxies that have no previously published IRAS fluxes, wehave used the IRAS database to extract fluxes or upper limits tosensitivity levels significantly better than those of the IRAS PointSource Catalog. New IRAS data include 79 galaxies detected in at leastone band, and 66 galaxies with good upper limits. In total, about 60% ofall dwarf galaxies in the sample now have been detected at 60/100μm.

Global properties of dwarf galaxies II. Colours and luminosities
We have used a previously determined sample of 278 dwarf galaxies formost of which B magnitudes, optical colours, HI fluxes and IRASflux-densities are known, in order to derive luminosities, colours andsurface brightnesses. Dwarf galaxy properties are compared to those of acontrol sample of 228 larger spiral galaxies. The dwarf galaxies have onaverage higher 60/100μm flux ratios and lower 12/25μm flux ratiosthan the spiral galaxies, indicating that the contribution of `cirrus'to the infrared emission from dwarf galaxies is relativelyinsignificant. In the dwarf galaxies, the 60/100μm flux ratioincreases with increasing optical blueness; spiral galaxies show theopposite. Dwarf galaxies with a low optical surface brightness have low100μm/HI ratios, but the converse is not true. Galaxies with high100μm/HI ratios (indicative of high dust-to-gas ratios) also havehigh FIR/B ratios as well as high 60/100μm flux-density ratios.Although this is true for both spiral and dwarf galaxies, at given100μm/HI ratios the dwarf galaxies have both a lower FIR/B ratio anda higher 60/100μm flux-density ratio. This result is of importance inthe interpretation of FIR/B - 60/100μm diagrams in terms of starformation activity.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

KISO survey for ultraviolet-excess galaxies. XIII.
Not Available

A 1.49 GHz atlas of the IRAS Bright Galaxy Sample
The VLA has been used in its A-, B-, C-, and D-configurations to make1.49 GHz maps of sources in both the original and revised IRAS BrightGalaxy Samples of strong extragalactic sources selected at a wavelengthof 60 microns. Integrated 1.49 GHz flux densities were obtained from thelowest resolution maps, and maps were made with higher resolution sothat nearly all of the radio sources have been at least partiallyresolved. Only NGC 1377 was not detected at 1.49 GHz. An atlas ofcontour maps, a table of total flux densities plus other radio sourceparameters, and references to published radio maps are given. Since theinfrared and radio continuum brightness distributions of IR-selectedgalaxies are usually similar, these high-resolution radio maps can beused as substitutes for the unavailable IR maps to indicate the sizesand precise locations of the IR-emitting regions.

High-luminosity IRAS galaxies. II - Optical spectroscopy, modelling of starburst regions and comparison with structure
Moderate-resolution spectrophotometry was used to obtain variousemission-line ratios and emission-line luminosities for a completesample of predominantly high-luminosity IRAS galaxies. Most of theobjects exhibit H II region-like spectra, while about 12 percent areSeyferts or LINERs. The results show the IRAS galaxies to be of lowerionization than an optically selected sample of H II region-likegalaxies, possibly due to either high metallicities or to their highdust content. Although the estimated number of O stars present isconsistent with the observed emission-line flux, the IR to emission-lineluminosity ratio of all the IRAS galaxies is very high. The presentobservations can be reconciled using a model with two types of regions,type I clouds (with extinctions of about 20) representing very recentstar formation, and type II clouds (with extinctions of about 1)representing older starburst and/or general disk star formation.

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Los Perros de Caza
Ascensión Recta:14h02m36.20s
Declinación:+32°30'35.0"
Dimensión Aparente:1.549′ × 0.372′

Catálogos y designaciones:
Nombres Propios   (Edit)
NGC 2000.0NGC 5433
HYPERLEDA-IPGC 50012

→ Solicitar más catálogos y designaciones a VizieR