Principal     Comenzar     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Prensa     Login  

NGC 5135


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Seyfert Galaxies and the Hard X-Ray Background: Artificial Chandra Observations of z=0.3 Active Galaxies
Deep X-ray surveys have resolved much of the X-ray background radiationbelow 2 keV into discrete sources, but the background above 8 keVremains largely unresolved. The obscured (type 2) active galactic nuclei(AGNs) that are expected to dominate the hard X-ray background have notyet been detected in sufficient numbers to account for the observedbackground flux. However, deep X-ray surveys have revealed large numbersof faint quiescent and starburst galaxies at moderate redshifts. Inhopes of recovering the missing AGN population, it has been suggestedthat the defining optical spectral features of low-luminosity Seyfertnuclei at large distances may be overwhelmed by their host galaxies,causing them to appear optically quiescent in deep surveys. We test thispossibility by artificially redshifting a sample of 23 nearby,well-studied active galaxies to z=0.3, testing them for X-ray AGNsignatures, and comparing them to the objects detected in deep X-raysurveys. We find that these redshifted galaxies have propertiesconsistent with the deep-field normal and optically bright, X-ray-faintgalaxy (OBXF) populations, supporting the hypothesis that the numbers ofAGNs in deep X-ray surveys are being underestimated and suggesting thatOBXFs should not be ruled out as candidate AGN hosts that couldcontribute to the hard X-ray background source population.

SINFONI adaptive optics integral field spectroscopy of the Circinus Galaxy
Aims.We investigate the star formation activity and the gas and stellardynamics on scales of a few parsecs in the nucleus of the CircinusGalaxy. Methods: .Using the adaptive optics near infrared integralfield spectrometer SINFONI on the VLT, we have obtained observations ofthe Circinus galaxy on scales of a few parsecs and at a spectralresolution of 70 km s-1 FWHM. The physical properties of thenucleus are analyzed by means of line and velocity maps extracted fromthe SINFONI datacube. Starburst models are constrained using theBrγ flux, stellar continuum (as traced via the CO absorptionbandheads longward of 2.3 μm), and radio continuum. Results:.The similarity of the morphologies of the H2 1-0 S(1) 2.12 μm andBrγ 2.17 μm lines to the stellar continuum and also theirkinematics, suggest a common origin in star formation. Within 8 pc ofthe AGN we find there has been a recent starburst in the last 100 Myr,which currently accounts for 1.4% of the galaxy's bolometric luminosity.The similarity of the spatial scales over which the stars and gas existindicates that this star formation is occuring within the torus; andcomparison of the gas column density through the torus to the maximumpossible optical depth to the stars implies the torus is a clumpymedium. The coronal lines show asymmetric profiles with a spatiallycompact narrow component and a spatially extended blue wing. Thesecharacteristics are consistent with some of the emission arising inclouds gravitationally bound to the AGN, and some outflowing incloudlets which have been eroded away from the bound clouds.

The K-band properties of Seyfert 2 galaxies
Aims. It is well known that the [O iii]λ5007 emission line andhard X-ray (2-10 keV) luminosities are good indicators of AGN activitiesand that the near and mid-infrared emission of AGN originates fromre-radiation of dusty clouds heated by the UV/optical radiation from theaccretion disk. In this paper we present a study of the near-infraredK-band (2.2 μm) properties for a sample of 65 Seyfert 2 galaxies. Methods: .By using the AGN/Bulge/Disk decomposition technique, weanalyzed the 2MASS K_S-band images for Seyfert 2 galaxies in order toderive the K_S-band magnitudes for the central engine, bulge, and diskcomponents. Results: .We find that the K_S-band magnitudes of thecentral AGN component in Seyfert 2 galaxies are tightly correlated withthe [O iii]λ5007 and the hard X-ray luminosities, which suggeststhat the AGN K-band emission is also an excellent indicator of thenuclear activities at least for Seyfert 2 galaxies. We also confirm thegood relation between the central black hole masses and bulge's K-bandmagnitudes for Seyfert 2s.

Gas metallicity in the narrow-line regions of high-redshift active galactic nuclei
We analyze optical (UV rest-frame) spectra of X-ray selected narrow-lineQSOs at redshift 1.5  z  3.7 found in the Chandra Deep FieldSouth and of narrow-line radio galaxies at redshift 1.2  z 3.8 to investigate the gas metallicity of the narrow-line regions andtheir evolution in this redshift range. Such spectra are also comparedwith UV spectra of local Seyfert 2 galaxies. The observational data areinconsistent with the predictions of shock models, suggesting that thenarrow-line regions are mainly photoionized. The photoionization modelswith dust grains predict line flux ratios which are also in disagreementwith most of the observed values, suggesting that the high-ionizationpart of the narrow-line regions (which is sampled by the availablespectra) is dust-free. The photoionization dust-free models provide twopossible scenarios which are consistent with the observed data:low-density gas clouds (nH  103cm-3) with a sub-solar metallicity (0.2  Z_gas/Z_ȯ 1.0), or high-density gas clouds (nH ˜105 cm-3) with a wide range of gas metallicity(0.2  Z_gas/Z_ȯ  5.0). Regardless of the specificinterpretation, the observational data do not show any evidence for asignificant evolution of the gas metallicity in the narrow-line regionswithin the redshift range 1.2  z  3.8. Instead, we find atrend for more luminous active galactic nuclei to have more metal-richgas clouds (luminosity-metallicity relation), which is in agreement withthe same finding in the studies of the broad-line regions. The lack ofevolution for the gas metallicity of the narrow-line regions impliesthat the major epoch of star formation in the host galaxies of theseactive galactic nuclei is at z  4.

An atlas of calcium triplet spectra of active galaxies
We present a spectroscopic atlas of active galactic nuclei covering theregion around the λλ8498, 8542, 8662 calcium triplet(CaT). The sample comprises 78 objects, divided into 43 Seyfert 2s, 26Seyfert 1s, three starburst and six normal galaxies. The spectra pertainto the inner ~300 pc in radius, and thus sample the central kinematicsand stellar populations of active galaxies. The data are used to measurestellar velocity dispersions (σ*) with bothcross-correlation and direct fitting methods. These measurements arefound to be in good agreement with each other and with those in previousstudies for objects in common. The CaT equivalent width is alsomeasured. We find average values and sample dispersions ofWCaT of 4.6 +/- 2.0, 7.0 +/- 1.0 and 7.7 +/- 1.0 Å forSeyfert 1s, Seyfert 2s and normal galaxies, respectively. We furtherpresent an atlas of [SIII]λ9069 emission-line profiles for asubset of 40 galaxies. These data are analysed in a companion paperwhich addresses the connection between stellar and narrow-line regionkinematics, the behaviour of the CaT equivalent width as a function ofσ*, activity type and stellar population properties.

On the transmission-dominated to reprocessing-dominated spectral state transitions in Seyfert 2 galaxies
We present Chandra and XMM-Newton observations of a small sample (11objects) of optically selected Seyfert 2 galaxies, for which ASCA andBeppoSAX had suggested Compton-thick obscuration of the active galacticnucleus (AGN). The main goal of this study is to estimate the rate oftransitions between `transmission-dominated' and`reprocessing-dominated' states. We discover one new transition in NGC4939, with a possible additional candidate in NGC 5643. This indicates atypical occurrence rate of at least ~0.02yr-1. Thesetransitions could be due to large changes of the obscuring gas columndensity, or to a transient dimming of the AGN activity, the latterscenario being supported by detailed analysis of the best-studiedevents. Independently of the ultimate mechanism, comparison of theobserved spectral dynamics with Monte Carlo simulations demonstratesthat the obscuring gas is largely inhomogeneous, with multiple absorbingcomponents possibly spread through the whole range of distances from thenucleus between a fraction of parsecs up to several hundred parsecs. Asa by-product of this study, we report the first measurement ever of thecolumn density covering the AGN in NGC 3393 (NH~= 4.4 ×1024cm-2), and the discovery of soft X-rayextended emission, apparently aligned along the host galaxy main axis inNGC 5005. The latter object most likely hosts an historicallymisclassified low-luminosity Compton-thin AGN.

Dust Morphology of Hidden Broad-Line Region and Non-Hidden Broad-Line Region Seyfert 2 Galaxies
We investigate the nuclear dust properties of hidden broad-line region(HBLR) and non-HBLR Seyfert 2 galaxies. Optical images obtained from theHubble Space Telescope for a selected sample of HBLR and non-HBLRSeyfert 2 galaxies are fitted with the Galfit package to probe the innerstructures of these galaxies within the central 1 kpc regions. Most ofthe galaxies show complicated dust features in these regions. However,the dust morphology shows no significant difference between the HBLR andnon-HBLR Seyfert 2 galaxies. Dust masses inside the 1 kpc nuclearregions (M1kpc) are estimated from the obscuration levels inthe central regions of these galaxies. We compare our results with otherobserved properties, including [O III], far-infrared, and radioemission. We find that the HBLR and non-HBLR Seyfert 2 galaxies showdifferent near-infrared colors and M1kpc-FIR correlations,indicating that these two classes of Seyfert 2 galaxies are dominated bydifferent emission mechanisms. We suggest that they are intrinsicallydifferent and cannot be explained by the standard unification model.

EGRET Upper Limits and Stacking Searches of Gamma-Ray Observations of Luminous and Ultraluminous Infrared Galaxies
We present a stacking analysis of EGRET γ-ray observations at thepositions of luminous and ultraluminous infrared galaxies. The latterwere selected from the recently presented HCN survey, which is thoughtto contain the most active star-forming regions of the universe.Different sorting criteria are used, and since there is no positivecollective detection of γ-ray emission from these objects, wedetermined both collective and individual upper limits. The uppermostexcess we find appears in the case of ULIRGs ordered by redshift, at avalue of 1.8 σ.

New H2O masers in Seyfert and FIR bright galaxies
Using the Effelsberg 100-m telescope, detections of four extragalacticwater vapor masers are reported. Isotropic luminosities are ~50, 1000, 1and 230 Lȯ for Mrk 1066 (UGC 2456), Mrk 34, NGC 3556 andArp 299, respectively. Mrk 34 contains by far the most distant and oneof the most luminous water vapor megamasers so far reported in a Seyfertgalaxy. The interacting system Arp 299 appears to show two maserhotspots separated by approximately 20´´. With these newresults and even more recent data from Braatz et al. (2004, ApJ, 617,L29), the detection rate in our sample of Seyferts with known jet-NarrowLine Region interactions becomes 50% (7/14), while in star forminggalaxies with high (S100~μ m>50 Jy) far infrared fluxesthe detection rate is 22% (10/45). The jet-NLR interaction sample maynot only contain “jet-masers” but also a significant numberof accretion “disk-masers” like those seen in NGC 4258. Astatistical analysis of 53 extragalactic H2O sources (excluding theGalaxy and the Magellanic Clouds) indicates (1) that the correlationbetween IRAS Point Source and H2O luminosities, established forindividual star forming regions in the galactic disk, also holds forAGN-dominated megamaser galaxies; (2) that maser luminosities are notcorrelated with 60 μm/100 μm color temperatures; and (3) that onlya small fraction of the luminous megamasers (L_H_2O > 100Lȯ) detectable with 100-m sized telescopes have so farbeen identified. The H2O luminosity function (LF) suggests that thenumber of galaxies with 1 Lȯ < L_H_2O < 10Lȯ, the transition range between“kilomasers” (mostly star formation) and“megamasers” (active galactic nuclei), is small. The overallslope of the LF, ~-1.5, indicates that the number of detectable masersis almost independent of their luminosity. If the LF is not steepeningat very high maser luminosities and if it is possible to find suitablecandidate sources, H2O megamasers at significant redshifts should bedetectable even with present day state-of-the-art facilities.

The star formation history of Seyfert 2 nuclei
We present a study of the stellar populations in the central ~200 pc ofa large and homogeneous sample comprising 79 nearby galaxies, most ofwhich are Seyfert 2s. The star formation history of these nuclei isreconstructed by means of state-of-the-art population synthesismodelling of their spectra in the 3500-5200 Åinterval. Aquasar-like featureless continuum (FC) is added to the models to accountfor possible scattered light from a hidden active galactic nucleus(AGN).We find the following. (1) The star formation history of Seyfert 2nuclei is remarkably heterogeneous: young starbursts, intermediate-ageand old stellar populations all appear in significant and widely varyingproportions. (2) A significant fraction of the nuclei show a strong FCcomponent, but this FC is not always an indication of a hidden AGN: itcan also betray the presence of a young, dusty starburst. (3) We detectweak broad Hβ emission in several Seyfert 2s after cleaning theobserved spectrum by subtracting the synthesis model. These are mostlikely the weak scattered lines from the hidden broad-line regionenvisaged in the unified model, given that in most of these casesindependent spectropolarimetry data find a hidden Seyfert 1. (4) The FCstrengths obtained by the spectral decomposition are substantiallylarger for the Seyfert 2s which present evidence of broad lines,implying that the scattered non-stellar continuum is also detected. (5)There is no correlation between the star formation in the nucleus andeither the central or overall morphology of the parent galaxies.

HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies
We report systematic HCN J=1-0 (and CO) observations of a sample of 53infrared (IR) and/or CO-bright and/or luminous galaxies, including sevenultraluminous infrared galaxies, nearly 20 luminous infrared galaxies,and more than a dozen of the nearest normal spiral galaxies. This is thelargest and most sensitive HCN survey of galaxies to date. All galaxiesobserved so far follow the tight correlation between the IR luminosityLIR and the HCN luminosity LHCN initially proposedby Solomon, Downes, & Radford, which is detailed in a companionpaper. We also address here the issue of HCN excitation. There is noparticularly strong correlation between LHCN and the 12 μmluminosity; in fact, of all the four IRAS bands, the 12 μm luminosityhas the weakest correlation with the HCN luminosity. There is also noevidence of stronger HCN emission or a higher ratio of HCN and COluminosities LHCN/LCO for galaxies with excess 12μm emission. This result implies that mid-IR radiative pumping, orpopulating, of the J=1 level of HCN by a mid-IR vibrational transitionis not important compared with the collisional excitation by densemolecular hydrogen. Furthermore, large velocity gradient calculationsjustify the use of HCN J=1-0 emission as a tracer of high-densitymolecular gas (>~3×104/τcm-3) andgive an estimate of the mass of dense molecular gas from HCNobservations. Therefore, LHCN may be used as a measure of thetotal mass of dense molecular gas, and the luminosity ratioLHCN/LCO may indicate the fraction of moleculargas that is dense.

A Green Bank Telescope Search for Water Masers in Nearby Active Galactic Nuclei
Using the Green Bank Telescope, we have conducted a survey for 1.3 cmwater maser emission toward the nuclei of nearby active galaxies, themost sensitive large survey for H2O masers to date. Among 145galaxies observed, maser emission was newly detected in 11 sources andconfirmed in one other. Our survey targeted nearby (v<12,000 kms-1), mainly type 2 active galactic nuclei (AGNs) north ofδ=-20deg and includes a few additional sources as well.We find that more than one-third of Seyfert 2 galaxies have strong maseremission, although the detection rate declines beyond v~5000 kms-1 because of sensitivity limits. Two of the masersdiscovered during this survey are found in unexpected hosts: NGC 4151(Seyfert 1.5) and NGC 2782 (starburst). We discuss the possiblerelations between the large X-ray column to NGC 4151 and a possiblehidden AGN in NGC 2782 to the detected masers. Four of the masersdiscovered here, NGC 591, NGC 4388, NGC 5728, and NGC 6323, havehigh-velocity lines symmetrically spaced about the systemic velocity, alikely signature of molecular gas in a nuclear accretion disk. The masersource in NGC 6323, in particular, reveals the classic spectrum of a``disk maser'' represented by three distinct groups of Dopplercomponents. Future single-dish and VLBI observations of these fourgalaxies could provide a measurement of the distance to each galaxy andof the Hubble constant, independent of standard candle calibrations.

Comparison of Nuclear Starburst Luminosities between Seyfert 1 and 2 Galaxies Based on Near-Infrared Spectroscopy
We report on infrared K- (2-2.5 μm) and L-band (2.8-4.1 μm) slitspectroscopy of 23 Seyfert 1 galaxies in the CfA and 12 μm samples. Apolycyclic aromatic hydrocarbon (PAH) emission feature at 3.3 μm inthe L band is primarily used to investigate nuclear star-formingactivity in these galaxies. The 3.3 μm PAH emission is detected in 10sources (=43%), demonstrating that detection of nuclear star formationin a significant fraction of Seyfert 1 galaxies is now feasible. For thePAH-detected nuclei, the surface brightness values of the PAH emissionare as high as those of typical starbursts, suggesting that the PAHemission probes the putative nuclear starbursts in the dusty tori aroundthe central active galactic nuclei (AGNs). The magnitudes of the nuclearstarbursts are quantitatively estimated from the observed 3.3 μm PAHemission luminosities. The estimated starburst luminosities relative tosome indicators of AGN powers in these Seyfert 1 galaxies are comparedwith 32 Seyfert 2 galaxies in the same samples that we have previouslyobserved. We find that there is no significant difference in nuclearstarburst to AGN luminosity ratios of Seyfert 1 and 2 galaxies and thatnuclear starburst luminosity positively correlates with AGN power inboth types. Our results favor a slightly modified AGN unification model,which predicts that nuclear starbursts occurring in the dusty tori ofSeyfert galaxies are physically connected to the central AGNs, ratherthan the classical unification paradigm, in which the dusty tori simplyhide the central AGNs of Seyfert 2 galaxies and reprocess AGN radiationas infrared dust emission in Seyfert galaxies. No significantdifferences in nuclear star formation properties are recognizablebetween Seyfert 1 galaxies in the CfA and 12 μm samples.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

The Star Formation Rate and Dense Molecular Gas in Galaxies
HCN luminosity is a tracer of dense molecular gas,n(H2)>~3×104cm-3, associatedwith star-forming giant molecular cloud (GMC) cores. We present theresults and analysis of our survey of HCN emission from 65 infraredgalaxies, including nine ultraluminous infrared galaxies (ULIGs,LIR>~1012Lsolar), 22 luminousinfrared galaxies (LIGs,1011Lsolar0.06 are LIGs or ULIGs. Normal spiralsall have similar and low dense gas fractionsLHCN/LCO=0.02-0.05. The global star formationefficiency depends on the fraction of the molecular gas in a densephase.

10 Micron Imaging of Seyfert Galaxies from the 12 Micron Sample
We present small-aperture (1.5") photometry and new high-resolutionimages at 10 μm (N band) for 87 Seyfert galaxies from the Extended 12μm Sample drawn from the IRAS database. With this data we hope totest the predictions of the unified model for active galactic nuclei andto search for bright, extended circumnuclear 10 μm emission. Wedetected 62 Seyfert galaxies, 18 of which have no previously publishedsmall-aperture photometry. All the detected sources, both Seyfert 1'sand Seyfert 2's, show a central point source. The 31 Seyfert 1's and 31Seyfert 2's that we detected have similar luminosity distributions.Except for previously known bright extended 10 μm structure aroundArp 220, NGC 1068, and NGC 7469, we see definitive evidence for brightextended emission around only one new object: Mrk 1239. Four otherSeyfert 1's and six other Seyfert 2's show evidence of faint, low-levelextended emission. One Seyfert 1 and two Seyfert 2's show evidence ofsignificantly increased flux over previously published small-aperturevalues. We also compared the N-band data with the J-Ks colorthat we derived from the Two Micron All Sky Survey (2MASS). There is adistinct trend of redder central bulge J-Ks colorscorresponding to brighter absolute N-band magnitudes. In color-magnitudespace there is a definite grouping of Seyfert 1's and Seyfert 2's, withtwo sets of outliers.

Accretion and Outflow in the Active Galactic Nucleus and Starburst of NGC 5135
Observations of the Seyfert 2 and starburst galaxy NGC 5135 with theChandra X-Ray Observatory demonstrate that both of these phenomenacontribute significantly to its X-ray emission. We spatially isolate theactive galactic nucleus (AGN) and demonstrate that it is entirelyobscured by column density NH>1024cm-2, detectable in the Chandra bandpass only as a stronglyreprocessed weak continuum and a prominent iron Kα emission linewith equivalent width of 2.4 keV. Most of the soft X-ray emission, bothnear the AGN and extending over spatial scales of several kpc, iscollisionally excited plasma. We attribute this thermal emission tostellar processes. The AGN dominates the X-ray emission only at energiesabove 4 keV. In the spectral energy distribution that extends tofar-infrared wavelengths, nearly all the emergent luminosity below 10keV is attributable to star formation, not the AGN.

Asteroid database
The development and significance of asteroid database are reviewed inthis paper. Some of online database of asteroid are presented andcompared briefly, including asteroid orbital elements database, asteroidphotometric database, asteroid infrared database, near earth asteroiddatabase and asteroid database. Ephemeris service based on asteroiddatabase is mentioned. The trend of development of asteroid database hasalso been discussed.

The Starburst-AGN connection in the era of the GTC
Elucidating the relationship between intense star formation and the AGNphenomenon is crucial to our understanding of the formation of galaxiesand their supermassive black holes (SMBHs) in the early Universe. Therehave been many suggestions that starbursts play a powerful role innearby Seyfert 2 galaxies. However, the role that starburst play in morepowerful distant AGN is not known. This contribution shows how deepspectroscopy and imaging taken with OSIRIS and EMIR will help todetermine whether the ubiquitous link between star formation and nuclearactivity established for nearby Seyferts extends to more powerfuldistant AGN.

Quantifying dust and the ultraviolet radiation density in the local Universe
A sample of local galaxies for which far-infrared and ultraviolet fluxesare available is used to estimate the characteristic dust extinction ingalaxies and to test whether standard dust properties are plausible.Assuming galaxies can be characterized by a single dust optical depth(certainly not valid for galaxies with a dominant starburst component),the infrared excess and ultraviolet colours of local galaxies are foundto be consistent with normal Milky Way dust, with a mean value forE(B-V) of 0.16. A significant fraction of the dust heating is caused byolder, lower-mass stars, and this fraction increases towards earliergalaxy types.Analysis of (FFIR/FUV) versus ultraviolet colourdiagrams for starburst galaxies in terms of a simple screen dust modeldoes not support a Calzetti (1997) rather than a Milky Way extinctionlaw, though the absence of the expected strong 2200-Å feature inseveral galaxies with IUE spectra does show that more detailed radiativetransfer models are needed - probably with nonspherical geometry.A simple treatment in which the 100/60-μm flux ratio is used tosubtract the optically thick starburst contribution to the far-infraredradiation results in lower extinction estimates for the optically thincirrus component, with a mean E(B-V) of 0.10.The ultraviolet luminosity density, corrected for dust extinction, isderived and a value for the local mean star formation rate inferred.This is consistent with previous estimates from ultraviolet surveys andfrom Hα surveys.

Extended gas in Seyfert 2 galaxies: implications for the nuclear source
We use long-slit spectroscopic optical data to derive the properties ofthe extended emitting gas and the nuclear luminosity of a sample of 18Seyfert 2 galaxies. From the emission-line luminosities and ratios wederive the density, reddening and mass of the ionized gas as a functionof distance up to 2-4 kpc from the nucleus. Taking into account thegeometric dilution of the nuclear radiation, we derive the radialdistribution of covering factors and the minimum rate of ionizingphotons emitted by the nuclear source. This number is an order ofmagnitude larger than that obtained from the rate of ionizing photons`intercepted' by the gas and measured from the Hα luminosity. Acalibration is proposed to recover this number from the observedluminosity. The HeIIλ4686/Hβ line ratio was used tocalculate the slope of the ionizing spectral energy distribution (SED),which in combination with the number of ionizing photons allows thecalculation of the hard X-ray luminosities. These luminosities areconsistent with those derived from X-ray spectra in the eight cases forwhich such data are available and recover the intrinsic X-ray emissionin Compton-thick cases. Our method can thus provide reliable estimatesof the X-ray fluxes in Seyfert 2 galaxies for the cases where it is notreadily available. We also use the ionizing SED and luminosity topredict the infrared luminosity under the assumption that it isdominated by reprocessed radiation from a dusty torus, and find a goodagreement with the observed IRAS luminosities.

Stellar population gradients in Seyfert 2 galaxies: northern sample
We use high signal-to-noise ratio long-slit spectra in theλλ3600-4700 range of the 20 brightest northern Seyfert 2galaxies to study the variation of the stellar population properties asa function of distance from the nucleus. In order to characterize thestellar population and other continuum sources (e.g. featurelesscontinuum, FC) we have measured the equivalent width, W, of sixabsorption features, four continuum colours and their radial variations,and performed spectral population synthesis as a function of distancefrom the nucleus. About half of the sample has CaIIK and G band W valuessmaller at the nucleus than at 1 kpc from it, owing to a youngerpopulation and/or FC. The stellar population synthesis shows that, whileat the nucleus, 75 per cent of the galaxies present contribution >20per cent of ages <=100 Myr and/or of an FC, this proportion decreasesto 45 per cent at 3 kpc. In particular, 55 per cent of the galaxies havea contribution >10 per cent of the 3-Myr/FC component (a degeneratecomponent in which one cannot separate what is caused by an FC or by a3-Myr stellar population) at the nucleus, but only 25 per cent of themhave this contribution at 3 kpc. As a reference, the stellar populationof 10 non-Seyfert galaxies, spanning the Hubble types of the Seyfert(from S0 to Sc) was also studied. A comparison between the stellarpopulation of the Seyferts and that of the non-Seyferts shows systematicdifferences: the contribution of ages younger than 1 Gyr is in mostcases larger in the Seyfert galaxies than in non-Seyferts, not only atthe nucleus but up to 1 kpc from it.

FLASH redshift survey - I. Observations and catalogue
The FLAIR Shapley-Hydra (FLASH) redshift survey catalogue consists of4613 galaxies brighter than bJ= 16.7 (corrected for Galacticextinction) over a 700-deg2 region of sky in the generaldirection of the Local Group motion. The survey region is a70°× 10° strip spanning the sky from the ShapleySupercluster to the Hydra cluster, and contains 3141 galaxies withmeasured redshifts. Designed to explore the effect of the galaxyconcentrations in this direction (in particular the Supergalactic planeand the Shapley Supercluster) upon the Local Group motion, the 68 percent completeness allows us to sample the large-scale structure betterthan similar sparsely-sampled surveys. The survey region does notoverlap with the areas covered by ongoing wide-angle (Sloan or 2dF)complete redshift surveys. In this paper, the first in a series, wedescribe the observation and data reduction procedures, the analysis forthe redshift errors and survey completeness, and present the surveydata.

Nuclear Starburst Activity in the Seyfert 2 Galaxy NGC 2273
We present spectrophotometric results of the Seyfert 2 galaxy NGC 2273.The presence of high-order Balmer absorption lines (H8, H9, H10) andweak equivalent widths of CaII K λ3933, CN λ4200, G-bandλ4300 and MgIb λ5173 clearly indicate recent star-formingactivity in the nuclear region. Using a simple stellar populationsynthesis model, we find that for the best fit, the contributions of apower-law featureless continuum, an intermediate-age (˜108 yr) and an old (>109 yr) stellar populationto the total light at the reference normalization wavelength are 10.0%,33.4% and 56.6%, respectively. The existence of recent starburstactivity is also consistent with its high far-infrared luminosity (logLFIR/ Lȯ = 9.9), its infrared color indexes [α(25,60) = -1.81 and α(60, 100)= -0.79, typical values for Seyfertgalaxies with circumnuclear starburst], and its q-value (2.23, ratio ofinfrared to radio flux, very similar to that of normal spirals andstarburst galaxies). Byrd et al. have suggested that NGC 2273 might haveinteracted with NGC 2273B in less than 109 yr ago, so thestarburst activity in this galaxy could have been triggered by tidalinteraction, as indicated in recent numerical simulations.

A High Resolution Imaging Survey of CO, HCN and HCO+ Lines towards Nearby Seyfert Galaxies
We have conducted a high resolution imaging survey of mm-wave molecularlines, i.e., CO(1-0), HCN(1-0), and HCO+(1-d$0) towards nearby Seyfertgalaxies using the Nobeyama Millimeter Array and the RAINBOWinterferometer. Some of Seyfert galaxies show extremely high HCN/CO andHCN/HCO+ line ratios, which are not observed in nuclear starburstgalaxies. These molecular line ratios can be a new diagnostic tool toinvestigate the ``AGN - starburst connection'' in active galaxies.

Compact Nuclear Starbursts in Seyfert 2 Galaxies from the CfA and 12 Micron Samples
We present infrared 2.8-4.1 μm slit spectra of 32 Seyfert 2 galaxiesin the CfA and 12 μm samples. The 3.3 μm polycyclic aromatichydrocarbon (PAH) emission feature was used to estimate the absolutemagnitude of a compact nuclear starburst (less than a few hundredparsecs in size) that is presumed to have occurred in the outer regionof an obscuring dusty molecular torus around a central supermassiveblack hole. We detected 3.3 μm PAH emission in 11 of the 32 Seyfert 2nuclei in our sample, providing evidence for the presence of compactnuclear starbursts in a significant fraction of Seyfert 2 nuclei.However, the rest-frame equivalent widths of the 3.3 μm PAH emissionand the 3.3 μm PAH-to-infrared luminosity ratios measured in thisstudy suggest that compact nuclear starbursts generally do notcontribute significantly to the observed 3-4 μm nuclear fluxes or tothe infrared luminosities of Seyfert 2 galaxies. Absorption features at3.4 μm from bare dust were clearly detected in only two of thenuclei, and features at 3.1 μm from ice-covered dust were detected inonly one nucleus. If the dust properties in the direction of theseSeyfert 2 nuclei do not differ significantly from the Galacticinterstellar medium, then these small absorption optical depths suggestthat dust extinction toward the 3-4 μm continuum emitting region inthe innermost part of the obscuring dusty torus is modest:AV<50-60 mag. Finally, the 3.3 μm PAH emissionluminosities measured in this study were found to be significantlycorrelated with IRAS 12 and 25 μm and nuclear N-band (10.6 μm)luminosities. If these three luminosities trace the power of the activegalactic nucleus (AGN), then the luminosities of compact nuclearstarbursts and AGNs are correlated. This correlation is in agreementwith theories predicting that the presence of a compact nuclearstarburst in the torus leads to an enhancement of the mass accretionrate onto the central supermassive black hole.

Circumnuclear Dust in Nearby Active and Inactive Galaxies. II. Bars, Nuclear Spirals, and the Fueling of Active Galactic Nuclei
We present a detailed study of the relation between circumnuclear dustmorphology, host-galaxy properties, and nuclear activity in nearbygalaxies. We use our sample of 123 nearby galaxies withvisible-near-infrared color maps from the Hubble Space Telescope tocreate well-matched, ``paired'' samples of 28 active and 28 inactivegalaxies, as well as 19 barred and 19 unbarred galaxies, that have thesame host-galaxy properties. Comparison of the barred and unbarredgalaxies shows that grand-design nuclear dust spirals are found only ingalaxies with a large-scale bar. These nuclear dust spirals, which arepresent in approximately one-third of all barred galaxies, also appearto be connected to the dust lanes along the leading edges of thelarge-scale bars. Grand-design nuclear spirals are more common thaninner rings, which are present in only a small minority of the barredgalaxies. Tightly wound nuclear dust spirals, in contrast, show a strongtendency to avoid galaxies with large-scale bars. Comparison of theactive galactic nuclei (AGNs)and inactive samples shows that nucleardust spirals, which may trace shocks and angular momentum dissipation inthe interstellar medium, occur with comparable frequency in both activeand inactive galaxies. The only difference between the active andinactive galaxies is that several inactive galaxies appear to completelylack dust structure in their circumnuclear region, while none of theAGNs lack this structure. The comparable frequency of nuclear spirals inactive and inactive galaxies, combined with previous work that finds nosignificant difference in the frequency of bars or interactions betweenwell-matched active and inactive galaxies, suggests that no universalfueling mechanism for low-luminosity AGNs operates at spatial scalesgreater than a ~100 pc radius from the galactic nuclei. The similaritiesof the circumnuclear environments of active and inactive galaxiessuggest that the lifetime of nuclear activity is less than thecharacteristic inflow time from these spatial scales. Anorder-of-magnitude estimate of this inflow time is the dynamicaltimescale. This sets an upper limit of several million years to thelifetime of an individual episode of nuclear activity.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

COLA. II. Radio and Spectroscopic Diagnostics of Nuclear Activity in Galaxies
We present optical spectroscopic observations of 93 galaxies taken fromthe infrared-selected COLA (compact objects in low-power AGNs) sample.These are all galaxies for which we have previously obtainedlow-resolution radio observations and high-resolution (<0.05")Australian Long Baseline Array snapshots. The sample spans the range offar-IR luminosities from normal galaxies to luminous infrared galaxiesand contains a significant number of galaxies involved in galaxy-galaxyinteractions. Of the galaxies observed, 78 (84%) exhibit emission linesindicating that they are either AGNs or actively forming stars(starburst galaxies). Using a newly developed, theoretically based,optical emission line scheme to classify the spectra, we find that 15%of the emission-line galaxies are Seyfert galaxies, 77% are starbursts,and the rest are either borderline AGN/starburst or show ambiguouscharacteristics. We find little evidence for an increase in the fractionof AGNs in the sample as a function of far-IR (FIR) luminosity, incontrast to previous studies, but our sample covers only a small rangein infrared luminosity(1010.5Lsolar<=LFIR<=1011.7 Lsolar), and thus a weak trend may be masked. Instead,as the infrared luminosity increases, so does the fraction of metal-richstarbursts, objects that on more traditional diagnostic diagrams wouldhave been classified as weak, low-ionization, narrow emission lineregions. As a whole the Seyfert galaxies exhibit a small, butstatistically significant, radio excess on the radio-FIR correlationcompared to the galaxies classified as starbursts. Compact (<0.05")radio cores are detected in 55% of the Seyfert galaxies, and thesegalaxies exhibit a significantly larger radio excess than the Seyfertgalaxies in which compact cores were not detected. Our results indicatethat there may be two distinct populations of Seyfert galaxies,``radio-excess'' Seyfert galaxies, which exhibit extended radiostructures and compact radio cores, and ``radio-quiet'' Seyfertgalaxies, in which the majority of the radio emission can be attributedto star formation in the host galaxy. No significant difference is seenbetween the IR and optical spectroscopic properties of Seyfert galaxieswith and without radio cores.

The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study
We extend the analysis presented in Paper I of a spectropolarimetricsurvey of the CfA and 12 μm samples of Seyfert 2 galaxies (S2s). Weconfirm that polarized (hidden) broad-line region (HBLR) S2s tend tohave hotter circumnuclear dust temperatures, show mid-IR spectra morecharacteristic of Seyfert 1 galaxies (S1s), and are intrinsically moreluminous than non-HBLR S2s. The levels of obscuration and circumnuclearstar formation, however, appear to be similar between HBLR and non-HBLRS2 galaxies, based on an examination of various observationalindicators. HBLR S2s, on average, share many similar large-scale,presumably isotropic, characteristics with S1s, as would be expected ifthe unified model is correct, while non-HBLR S2s generally do not. Theactive nuclear engines of non-HBLR S2s, then, appear to be truly weakerthan HBLR S2s, which in turn are fully consistent with being S1s viewedfrom another direction. There is also evidence that the fraction ofdetected HBLRs increases with the radio power of the active galacticnucleus. Thus, all S2 galaxies may not be intrinsically similar innature, and we speculate that evolutionary processes may be at work.

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Hidra
Ascensión Recta:13h25m43.70s
Declinación:-29°49'55.0"
Dimensión Aparente:2.57′ × 2.089′

Catálogos y designaciones:
Nombres Propios   (Edit)
NGC 2000.0NGC 5135
HYPERLEDA-IPGC 46974

→ Solicitar más catálogos y designaciones a VizieR