Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4478


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Modelling Lick spectroscopic indexes with the tunable filters of OSIRIS on GTC
We present the modelling of new indicators for old and intermediate agestellar populations based on the absorption features of Mg λ˜ 5175 Å, Fe λ ˜ 4383 Å, and Hβ λ˜ 5270, 4860 Å. Spectral models of stellar populations areconvolved with the responses of the tunable filters of OSIRIS-GTC toprovide photometric indexes with great abilities to separate age andmetallicity effects. The new indexes allow us to obtain 2D maps of thesefeatures on the basis of a photometric approach and are built up tounreveal most relevant stellar population parameters.

Optical/near-infrared colours of early-type galaxies and constraints on their star formation histories
We introduce and discuss the properties of a theoretical (B-K)(J-K)integrated colour diagram for single-age, single-metallicity stellarpopulations. We show how this combination of integrated colours is ableto largely disentangle the well-known age-metallicity degeneracy whenthe age of the population is greater than ~300Myr, and thus providesvaluable estimates of both age and metallicity of unresolved stellarsystems. We discuss in detail the effect on this colour-colour diagramof α-enhanced metal abundance ratios (typical of the oldestpopulations in the Galaxy), the presence of blue horizontal branch starsunaccounted for in the theoretical calibration and of statistical colourfluctuations in low-mass stellar systems. In the case of populationswith multiple stellar generations, the luminosity-weighted mean ageobtained from this diagram is shown to be heavily biased towards theyoungest stellar components. We then apply this method to several datasets for which optical and near-infrared photometry are available in theliterature. We find that Large Magellanic Cloud and M31 clusters havecolours which are consistent with the predictions of the models, butthese do not provide a sensitive test due to the fluctuations which arepredicted by our modelling of the Poisson statistics in such low-masssystems. For the two Local Group dwarf galaxies NGC 185 and 6822, themean ages derived from the integrated colours are consistent with thestar formation histories inferred independently from photometricobservations of their resolved stellar populations.The methods developed here are applied to samples of nearby early-typegalaxies with high-quality aperture photometry in the literature. Asample of bright field and Virgo cluster elliptical galaxies is found toexhibit a range of luminosity-weighted mean ages from 3 to 14Gyr, with amean of ~8Gyr, independent of environment, and mean metallicities at orjust above the solar value. Colour gradients are found in all of thegalaxies studied, in the sense that central regions are redder. Apartfrom two radio galaxies, where the extreme central colours are clearlydriven by the active galactic nucleus, and one galaxy which also shows aradial age gradient, these colour changes appear consistent withmetallicity changes at a constant mean age. Finally, aperture data forfive Virgo early-type dwarf galaxies show that these galaxies appear tobe shifted to lower mean metallicities and lower mean ages (range1-6Gyr) than their higher luminosity counterparts.

The ACS Virgo Cluster Survey. VIII. The Nuclei of Early-Type Galaxies
The ACS Virgo Cluster Survey is a Hubble Space Telescope program toobtain high-resolution imaging in widely separated bandpasses (F475W~gand F850LP~z) for 100 early-type members of the Virgo Cluster, spanninga range of ~460 in blue luminosity. We use this large, homogenous dataset to examine the innermost structure of these galaxies and tocharacterize the properties of their compact central nuclei. We presenta sharp upward revision in the frequency of nucleation in early-typegalaxies brighter than MB~-15 (66%<~fn<~82%)and show that ground-based surveys underestimated the number of nucleidue to surface brightness selection effects, limited sensitivity andpoor spatial resolution. We speculate that previously reported claimsthat nucleated dwarfs are more concentrated toward the center of Virgothan their nonnucleated counterparts may be an artifact of theseselection effects. There is no clear evidence from the properties of thenuclei, or from the overall incidence of nucleation, for a change atMB~-17.6, the traditional dividing point between dwarf andgiant galaxies. There does, however, appear to be a fundamentaltransition at MB~-20.5, in the sense that the brighter,``core-Sérsic'' galaxies lack resolved (stellar) nuclei. A searchfor nuclei that may be offset from the photocenters of their hostgalaxies reveals only five candidates with displacements of more than0.5", all of which are in dwarf galaxies. In each case, however, theevidence suggests that these ``nuclei'' are, in fact, globular clustersprojected close to the galaxy photocenter. Working from a sample of 51galaxies with prominent nuclei, we find a median half-light radius of=4.2 pc, with the sizes of individual nucleiranging from 62 pc down to <=2 pc (i.e., unresolved in our images) inabout a half-dozen cases. Excluding these unresolved objects, the nucleisizes are found to depend on nuclear luminosity according to therelation rh L0.50+/-0.03. Because the largemajority of nuclei are resolved, we can rule out low-level AGNs as anexplanation for the central luminosity excess in almost all cases. Onaverage, the nuclei are ~3.5 mag brighter than a typical globularcluster. Based on their broadband colors, the nuclei appear to have oldto intermediate age stellar populations. The colors of the nuclei ingalaxies fainter than MB~-17.6 are tightly correlated withtheir luminosities, and less so with the luminosities of their hostgalaxies, suggesting that their chemical enrichment histories weregoverned by local or internal factors. Comparing the nuclei to the``nuclear clusters'' found in late-type spiral galaxies reveals a closematch in terms of size, luminosity, and overall frequency. A formationmechanism that is rather insensitive to the detailed properties of thehost galaxy properties is required to explain this ubiquity andhomogeneity. The mean of the frequency function for thenucleus-to-galaxy luminosity ratio in our nucleated galaxies,=-2.49+/-0.09 dex (σ=0.59+/-0.10), isindistinguishable from that of the SBH-to-bulge mass ratio,=-2.61+/-0.07dex (σ=0.45+/-0.09), calculated in 23 early-type galaxies withdetected supermassive black holes (SBHs). We argue that the compactstellar nuclei found in many of our program galaxies are the low-masscounterparts of the SBHs detected in the bright galaxies. If thisinterpretation is correct, then one should think in terms of ``centralmassive objects''-either SBHs or compact stellar nuclei-that accompanythe formation of almost all early-type galaxies and contain a meanfraction ~0.3% of the total bulge mass. In this view, SBHs would be thedominant formation mode above MB~-20.5.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

The Ages of Elliptical Galaxies from Infrared Spectral Energy Distributions
The mean ages of early-type galaxies obtained from the analysis ofoptical spectra give a mean age of 8 Gyr at z=0, with 40% being youngerthan 6 Gyr. Independent age determinations are possible by usinginfrared spectra (5-21 μm), which we have obtained with the InfraredSpectrograph on Spitzer. This age indicator is based on the collectivemass-loss rate of stars, in which mass loss from AGB stars produces asilicate emission feature at 9-12 μm. This feature decreases morerapidly than the shorter wavelength continuum as a stellar populationages, providing an age indicator. From observations of 30 nearbyearly-type galaxies, 29 show a spectral energy distribution dominated bystars, and one has significant emission from the ISM and is excluded.The infrared age indicators for the 29 galaxies show them all to be old,with a mean age of about 10 Gyr and a standard deviation of only a fewGyr. This is consistent with the ages inferred from the values ofM/LB, but is inconsistent with the ages derived from theoptical line indices, which can be much younger. All of these ageindicators are luminosity weighted and should be correlated, even ifmultiple-age components are considered. The inconsistency indicates thatthere is a significant problem with either the infrared and theM/LB ages, which agree, or with the ages inferred from theoptical absorption lines.

The ACS Virgo Cluster Survey. XI. The Nature of Diffuse Star Clusters in Early-Type Galaxies
We use HST ACS imaging of 100 early-type galaxies in the ACS VirgoCluster Survey to investigate the nature of diffuse star clusters(DSCs). Compared to globular clusters (GCs), these star clusters havelow luminosities (MV>-8) and a broad distribution of sizes(320 magarcsec-2). The median colors of diffuse star cluster systems(1.1

The ACS Virgo Cluster Survey. IX. The Color Distributions of Globular Cluster Systems in Early-Type Galaxies
We present the color distributions of globular cluster (GC) systems for100 early-type galaxies observed in the ACS Virgo Cluster Survey, thedeepest and most homogeneous survey of this kind to date. On average,galaxies at all luminosities in our study (-22

Stellar Populations of Elliptical Galaxies in Virgo Cluster. I. The Data and Stellar Population Analysis
We have determined spectroscopic ages of elliptical galaxies in theVirgo Cluster using spectra of very high signal-to-noise ratio(S/N>100 Å-1). We observed eight galaxies with theSubaru Telescope and have combined this sample with six galaxiespreviously observed with the WHT. To determine their ages, we have useda new method based on the Hγσ age indicator,which is virtually independent of the effects of metallicity. Apart fromages we have estimated abundances of various elements. In this paper wepresent the observations, the data reduction, and the reliability of theHγσ method. The results of this investigation arepresented in a companion paper.

Massive Star Cluster Populations in Irregular Galaxies as Probable Younger Counterparts of Old Metal-rich Globular Cluster Populations in Spheroids
Peak metallicities of metal-rich populations of globular clusters(MRGCs) belonging to early-type galaxies and spheroidal subsystems ofspiral galaxies (spheroids) of different mass fall within the somewhatconservative -0.7<=[Fe/H]<=-0.3 range. Indeed, if possible ageeffects are taken into account, this metallicity range might becomesmaller. Irregular galaxies such as the Large Magellanic Cloud (LMC),with longer timescales of formation and lower star formation (SF)efficiency, do not contain old MRGCs with [Fe/H]>-1.0, but they areobserved to form populations of young/intermediate-age massive starclusters (MSCs) with masses exceeding 104 Msolar.Their formation is widely believed to be an accidental process fullydependent on external factors. From the analysis of available data onthe populations and their hosts, including intermediate-age populousstar clusters in the LMC, we find that their most probable meanmetallicities fall within -0.7<=[Fe/H]<=-0.3, as the peakmetallicities of MRGCs do, irrespective of signs of interaction.Moreover, both the disk giant metallicity distribution function (MDF) inthe LMC and the MDFs for old giants in the halos of massive spheroidsexhibit a significant increase toward [Fe/H]~-0.5. That is in agreementwith a correlation found between SF activity in galaxies and theirmetallicity. The formation of both the old MRGCs in spheroids and MSCpopulations in irregular galaxies probably occurs at approximately thesame stage of the host galaxies' chemical evolution and is related tothe essentially increased SF activity in the hosts around the samemetallicity that is achieved very early in massive spheroids, later inlower mass spheroids, and much later in irregular galaxies. Changes inthe interstellar dust, particularly in elemental abundances in dustgrains and in the mass distribution function of the grains, may be amongthe factors regulating star and MSC formation activity in galaxies.Strong interactions and mergers affecting the MSC formation presumablyplay an additional role, although they can substantially intensify theinternally regulated MSC formation process. Several implications of oursuggestions are briefly discussed.

Peculiarities and populations in elliptical galaxies. III. Dating the last star formation event
Using 6 colours and 4 Lick line-indices we derive two-component modelsof the populations of ellipticals, involving a "primary" and a"juvenile" population. The first component is defined by the regressionsof indices against the central velocity dispersion found in Papers I andII for the {Nop} sample of non-peculiar objects. The second one isapproximated by an SSP, and the modeling derives its age A, metallicityZ and fractional V-luminosity q_V, the fractional mass qMbeing found therefrom. The model is designed for "blueish" peculiargalaxies, i.e. the {Pec} sample and NGC 2865 family in the terminologyof Paper I. The morphological peculiarities and the population anomalyare then believed to involve the same event, i.e. a merger plusstarburst. It is possible to improve the models in a few cases byintroducing diffuse dust (as suggested by far IR data), and/or by takinginto account the fact that Lick- and colour indices do not relate toidentical galaxy volumes. In most of the cases, the mass ratio of youngstars qM seems too small for the product of a recent majormerger: the events under consideration might be minor mergers bringing"the final touch" to the build-up of the structure of the E-type object.The same modeling has been successfully applied to blueish galaxies ofthe {Nop} sample, without morphological peculiarities however, tosupport the occurence of a distinct perturbing event. A few reddishobjects of the {Pec} sample (NGC 3923 family) and of the {Nop} sampleare also modeled, in terms of an excess of high metallicity stars, ordiffuse dust, or both, but the results are inconclusive.

Modelling the Mg[b] Spectroscopic Index with the Tunable Filters of OSIRIS
We present our first attempt to model a new metallicity indicator forold and intermediate aged stellar populations on the basis of the Mg[b]absorption index at λ ˜ 5175 Å. Model spectra ofstellar populations are convolved with the responses of the TunableFilters of OSIRIS-GTC to provide a photometric index matching thespectroscopic Mg[b]. The new index allows us to obtain galaxy images ofthis feature on the basis of a photometric approach, without the veryhigh signal-to-noise requirements of the spectroscopic methods.

Absorption line indices for studying stellar populations
Absorption line-strengths have allowed us to carry out a comprehensivestellar populations analysis, providing very strong constraints fordiscriminating and constraining current galaxy formation scenarios. Idescribe the main features of this approach, pinpointing the mostpopular indices and diagnostic diagrams, and the main problems affectingthese studies such as the age-metallicity degeneracy. A special emphasisis given to ongoing efforts aiming at defining more accuratediagnostics, which allow us to fully exploit the flow of high qualitydata from current generation of large telescopes, including GTC.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

Reflections of Active Galactic Nucleus Outbursts in the Gaseous Atmosphere of M87
We combined deep Chandra, ROSAT HRI, and XMM-Newton observations of M87to study the impact of active galactic nucleus (AGN) outbursts on itsgaseous atmosphere. Many X-ray features appear to be a direct result ofrepetitive AGN outbursts. In particular, the X-ray cavities around thejet and counterjet are likely due to the expansion of radio plasma,while rings of enhanced emission at 14 and 17 kpc are probably shockfronts associated with outbursts that began 1-2×107 yrago. The effects of these shocks are also seen in brightenings withinthe prominent X-ray arms. On larger scales, ~50 kpc from the nucleus,depressions in the surface brightness may be remnants of earlieroutbursts. As suggested for the Perseus Cluster by Fabian and hiscoauthors, our analysis of the energetics of the M87 outbursts arguesthat shocks may be the most significant channel for AGN energy inputinto the cooling-flow atmospheres of galaxies, groups, and clusters. ForM87, the mean power driving the shock outburst,2.4×1043 ergs s-1, is 3 times greater thanthe radiative losses from the entire cooling flow. Thus, even in theabsence of other energy inputs, outbursts every 3×107yr are sufficient to quench the flow.

The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation
We have measured half-light radii, rh, for thousands ofglobular clusters (GCs) belonging to the 100 early-type galaxiesobserved in the ACS Virgo Cluster Survey and the elliptical galaxy NGC4697. An analysis of the dependencies of the measured half-light radiion both the properties of the GCs themselves and their host galaxiesreveals that, in analogy with GCs in the Galaxy but in a milder fashion,the average half-light radius increases with increasing galactocentricdistance or, alternatively, with decreasing galaxy surface brightness.For the first time, we find that the average half-light radius decreaseswith the host galaxy color. We also show that there is no evidence for avariation of rh with the luminosity of the GCs. Finally, wefind in agreement with previous observations that the averagerh depends on the color of GCs, with red GCs being ~17%smaller than their blue counterparts. We show that this difference isprobably a consequence of an intrinsic mechanism, rather than projectioneffects, and that it is in good agreement with the mechanism proposed byJordán. We discuss these findings in light of two simple picturesfor the origin of the rh of GCs and show that both lead to abehavior in rough agreement with the observations. After accounting forthe dependencies on galaxy color, galactocentric radius, and underlyingsurface brightness, we show that the average GC half-light radii can be successfully used as a standard ruler fordistance estimation. We outline the methodology, provide a calibrationfor its use, and discuss the prospects for this distance estimator withfuture observing facilities. We find =2.7+/-0.35 pcfor GCs with (g-z)=1.2 mag in a galaxy with color(g-z)gal=1.5 mag and at an underlying surface z-bandbrightness of μz=21 mag arcsec-2. Using thistechnique, we place an upper limit of 3.4 Mpc on the 1 σline-of-sight depth of the Virgo Cluster. Finally, we examine the formof the rh distribution for our sample galaxies and provide ananalytic expression that successfully describes this distribution.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

The Epochs of Early-Type Galaxy Formation as a Function of Environment
The aim of this paper is to set constraints on the epochs of early-typegalaxy formation through the ``archaeology'' of the stellar populationsin local galaxies. Using our models of absorption-line indices thataccount for variable abundance ratios, we derive ages, totalmetallicities, and element ratios of 124 early-type galaxies in high-and low-density environments. The data are analyzed by comparison withmock galaxy samples created through Monte Carlo simulations taking thetypical average observational errors into account, in order to eliminateartifacts caused by correlated errors. We find that all threeparameters, age, metallicity, and α/Fe ratio, are correlated withvelocity dispersion. We show that these results are robust againstrecent revisions of the local abundance pattern at high metallicities.To recover the observed scatter we need to assume an intrinsic scatterof about 20% in age, 0.08 dex in [Z/H], and 0.05 dex in [α/Fe].All low-mass objects withM*<~1010Msolar (σ<~130kms-1) show evidence for the presence of intermediate-agestellar populations with low α/Fe ratios. About 20% of theintermediate-mass objects with1010<~M*/Msolar<~1011[110<~σ/(kms-1)<~230 both elliptical andlenticular galaxies] must have either a young subpopulation or a bluehorizontal branch. On the basis of the above relationships, valid forthe bulk of the sample, we show that the Mg-σ relation is mainlydriven by metallicity, with similar contributions from the α/Feratio (23%) and age (17%). We further find evidence for an influence ofthe environment on the stellar population properties. Massive early-typegalaxies in low-density environments seem on average ~2 Gyr younger andslightly (~0.05-0.1 dex) more metal-rich than their counterparts inhigh-density environments. No offsets in the α/Fe ratios areinstead detected. With the aid of a simple chemical evolution model, wetranslate the derived ages and α/Fe ratios into star formationhistories. We show that most star formation activity in early-typegalaxies is expected to have happened between redshifts ~3 and 5 inhigh-density environments and between redshifts 1 and 2 in low-densityenvironments. We conclude that at least 50% of the total stellar massdensity must have already formed at z~1, in good agreement withobservational estimates of the total stellar mass density as a functionof redshift. Our results suggest that significant mass growth in theearly-type galaxy population below z~1 must be restricted to lessmassive objects, and a significant increase of the stellar mass densitybetween redshifts 1 and 2 should be present, caused mainly by the fieldgalaxy population. The results of this paper further imply the presenceof vigorous star formation episodes in massive objects at z~2-5 andevolved elliptical galaxies around z~1, both observationally identifiedas SCUBA galaxies and extremely red objects, respectively.

The Nuclear Disk in the Dwarf Elliptical Galaxy NGC 4486A
Many ellipticals contain nuclear disks of dust and gas. Some ellipticalscontain nuclear disks of stars that are distinct from the rest of thegalaxy. We show that the dwarf E2 galaxy NGC 4486A contains both-it is a``Rosetta stone'' object that tells us how nuclear disks evolve. Itsproperties suggest that, as accreted gas dissipates and settles towardthe center, it forms stars and builds a stellar disk. Secular growth mayexplain not only the most distinct nuclear disks such as the one in NGC4486A but also some of the disky distortions that are commonly seen inelliptical galaxies. That is, density distributions may grow secularlycuspier. This would result in chaotic mixing of stellar orbits in phasespace and would tend to make an elliptical galaxy evolve toward a morenearly axisymmetric shape.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS5-26555.

The Centers of Early-Type Galaxies with Hubble Space Telescope. V. New WFPC2 Photometry
We present observations of 77 early-type galaxies imaged with the PC1CCD of the Hubble Space Telescope (HST) WFPC2. ``Nuker-law'' parametricfits to the surface brightness profiles are used to classify the centralstructure into ``core'' or ``power-law'' forms. Core galaxies aretypically rounder than power-law galaxies. Nearly all power-law galaxieswith central ellipticities ɛ>=0.3 have stellar disks,implying that disks are present in power-law galaxies withɛ<0.3 but are not visible because of unfavorable geometry. Afew low-luminosity flattened core galaxies also have disks; these may betransition forms from power-law galaxies to more luminous core galaxies,which lack disks. Several core galaxies have strong isophote twistsinterior to their break radii, although power-law galaxies have interiortwists of similar physical significance when the photometricperturbations implied by the twists are evaluated. Central colorgradients are typically consistent with the envelope gradients; coregalaxies have somewhat weaker color gradients than power-law galaxies.Nuclei are found in 29% of the core galaxies and 60% of the power-lawgalaxies. Nuclei are typically bluer than the surrounding galaxy. Whilesome nuclei are associated with active galactic nuclei (AGNs), just asmany are not; conversely, not all galaxies known to have a low-level AGNexhibit detectable nuclei in the broadband filters. NGC 4073 and 4382are found to have central minima in their intrinsic starlightdistributions; NGC 4382 resembles the double nucleus of M31. In general,the peak brightness location is coincident with the photocenter of thecore to a typical physical scale of <1 pc. Five galaxies, however,have centers significantly displaced from their surrounding cores; thesemay be unresolved asymmetric double nuclei. Finally, as noted byprevious authors, central dust is visible in about half of the galaxies.The presence and strength of dust correlates with nuclear emission;thus, dust may outline gas that is falling into the central black hole.The prevalence of dust and its morphology suggest that dust clouds form,settle to the center, and disappear repeatedly on ~108 yrtimescales. We discuss the hypothesis that cores are created by thedecay of a massive black hole binary formed in a merger. Apart fromtheir brightness profiles, there are no strong differences between coregalaxies and power-law galaxies that demand this scenario; however, therounder shapes of core, their lack of disks, and their reduced colorgradients may be consistent with it.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555. These observations are associated withGO and GTO proposals 5236, 5446, 5454, 5512, 5943, 5990, 5999, 6099,6386, 6554, 6587, 6633, 7468, 8683, and 9107.

Ram Pressure Stripping in the Low-Luminosity Virgo Cluster Elliptical Galaxy NGC 4476
We present a deep VLA search for H I emission from the low-luminosityVirgo Cluster elliptical galaxy NGC 4476, which contains1.1×108 Msolar of molecular gas in anundisturbed disk in regular rotation. No H I was detected. The rms noisein the final image corresponds to a 3 σ column density sensitivityof 1.2×1020 cm-2 at the position of NGC4476, averaged over the 4 kpc beam. The total H I mass is less than1.5×107 Msolar. If we compare our H I upperlimit with the H2 content, we find that NGC 4476 is extremelydeficient in H I compared with other galaxies detected in these twospecies. The H2/HI mass ratio for NGC 4476 is greater than 7,whereas typical H2/HI ratios for elliptical galaxies detectedin both H I and H2 are less than 2. On the basis of thisextreme H I deficiency and the intracluster medium density at theprojected distance from M87, we argue that either NGC 4476 has undergoneram pressure stripping while traveling through the Virgo Cluster core orits average molecular gas density is larger and its interstellar UVfield is smaller than in typical spiral galaxies. NGC 4476 is located12' in projection from M87, which causes extreme continuum confusionproblems. We also discuss in detail the techniques used for continuumsubtraction. The spectral dynamic range of our final image is 50,000 to1.

Globular clusters in NGC 4365: new K-band imaging and a reassessment of the case for intermediate-age clusters
We study the globular cluster (GC) system of the Virgo giant ellipticalgalaxy NGC 4365, using new wide-field K-band imagingfrom the ESO 3.5 m New Technology Telescope, archive V and I imagingfrom FORS1 on the ESO VLT and HST/WFPC2+ACS data. As in most other largeellipticals, the GC colour distribution has (at least) two peaks, butthe colours of the red GCs appear more strongly weighted towardsintermediate colours compared to most other large ellipticals and theintegrated galaxy light. The intermediate-color/red peak may itself becomposed of two sub-populations, with clusters of intermediate coloursmore concentrated towards the centre of the galaxy than both the blueand red GCs. Nearly all GCs in our sample fall along a well-definednarrow sequence in the (V-K, V-I) two-colour diagram, with an offsettowards red V-K and/or blue V-I colours compared to simple stellarpopulation models for old ages. This has in the past been interpreted asevidence for an intermediate-age population of GCs. The offset ishowever seen for nearly all metal-rich clusters within the 5arcmin×5 arcmin SOFI field, not just those of intermediatecolours. We combine our VIK data with previously published spectroscopyresulting in a sample of 25 GCs with both spectroscopy and photometry.The differences between observed and model colour-metallicity relationsare consistent with the offsets observed in the two-colour diagram, withthe metal-rich GCs being too red (by ≈0.2 mag) in V-K and too blue(by ≈0.05 mag) in V-I compared to the models at a given metallicity.These offsets cannot easily be explained as an effect of younger ages.We further compare the colour-metallicity relation for GCs in NGC 4365with previously published data for NGC 3115 and theSombrero galaxy, both of which are believed from spectroscopic studiesto host exclusively old GC populations, and find the colour-metallicityrelations for all three galaxies to be very similar. We review theavailable evidence for intermediate-age GCs in NGC 4365 and concludethat, while this cannot be definitively ruled out, an alternativescenario is more likely whereby all the GCs are old but the relativenumber of intermediate-metallicity GCs is greater than typical for giantellipticals. The main obstacle to reaching a definitive conclusion isthe lack of robust calibrations of integrated spectral and photometricproperties for stellar populations with near-solar metallicity. In anycase, it is puzzling that the significant intermediate-colour GCpopulation in NGC 4365 is not accompanied by a corresponding shift ofthe integrated galaxy light towards bluer colours.

Near infra-red and optical colour gradients in E-type galaxies. Inferences on dust content
Colour gradients are considered for a sample of circa 50 E-type galaxiesin the Local Supercluster. The new data includes isophotal colourprofiles in J-H, J-K, V-J and V-K, measured using 2MASS frames mostlyfrom the Large Galaxies Atlas, V frames from previous work and Vprofiles from the literature. This is supplemented by U-B, B-V, B-R, V-Icolour gradients obtained anew from published photometric data. Colourgradients in E galaxies show remarkably large variations from object toobject and do not correlate with other properties. Metallicity gradientsare the primary cause as shown before. Age gradients with oppositeeffects are possibly needed to explain objects with small colourgradients. Some empirical evidence of such age effects has been foundfor a subset of objects with morphological peculiarities and youngerstars mixed. Dust has only modest effects on colour gradients, as shownby the fact that objects with zero IRAS 100 μ flux have the sameaverage values of the gradients, except in V-J and V-K, as those withnon zero flux (cf. Table 7). This last subsample however exhibits poorbut definite correlations between IRAS flux and gradients, which mightbe caused by the presence of a few relatively dusty galaxies in thesample. Given the absence of a correlation between any gradients andgalaxy velocity dispersion (and hence mass), the observations do notagree with the predictions of the monolithic scenario for the formationof E galaxies. Simulated datasets of “dummy” objectsmimicking the hierarchical scenario have been obtained, and used to testa technique for estimating the dust content of E-galaxies from thecomparison of the V-K (or V-J) colour gradients with the U-B (or B-V)ones: the contents of diffuse dust, gauged in terms of published models,are obtained for a dozen objects.

Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles
We present a study of the optical brightness profiles of early typegalaxies, using a number of samples of radio galaxies and opticallyselected elliptical galaxies. For the radio galaxy samples - B2 ofFanaroff-Riley type I and 3C of Fanaroff-Riley type II - we determined anumber of parameters that describe a "Nuker-law" profile, which werecompared with those already known for the optically selected objects. Wefind that radio active galaxies are always of the "core" type (i.e. aninner Nuker law slope γ < 0.3). However, there are core-typegalaxies which harbor no significant radio source and which areindistinguishable from the radio active galaxies. We do not find anyradio detected galaxy with a power law profile (γ > 0.5). Thisdifference is not due to any effect with absolute magnitude, since in aregion of overlap in magnitude the dichotomy between radio active andradio quiescent galaxies remains. We speculate that core-type objectsrepresent the galaxies that have been, are, or may become, radio activeat some stage in their lives; active and non-active core-type galaxiesare therefore identical in all respects except their eventualradio-activity: on HST scales we do not find any relationship betweenboxiness and radio-activity. There is a fundamental plane, defined bythe parameters of the core (break radius rb and breakbrightness μ_b), which is seen in the strong correlation betweenrb and μ_b. The break radius is also linearly proportionalto the optical Luminosity in the I band. Moreover, for the few galaxieswith an independently measured black hole mass, the break radius turnsout to be tightly correlated with MBH. The black hole masscorrelates even better with the combination of fundamental planeparameters rb and μ_b, which represents the centralvelocity dispersion.

A sample of X-ray emitting normal galaxies from the BMW-HRI Catalogue
We obtained a sample of 143 normal galaxies with X-ray luminosity in therange 1038{-}1043 erg s-1 from thecross-correlation of the ROSAT HRI Brera Multi-scale Wavelet (BMW-HRI)Catalogue with the Lyon-Meudon Extragalactic Database (LEDA). We findthat the average X-ray properties of this sample are in good agreementwith those of other samples of galaxies in the literature. We selected acomplete flux limited serendipitous sample of 32 galaxies from which wederived the log N-log S distribution of normal galaxies in the fluxrange 1.1{-} 110 × 10-14 erg cm-2s-1. The resulting distribution is consistent with theEuclidean -1.5 slope. Comparisons with other samples, such as theExtended Medium Sensitivity Survey, the ROSAT All Sky Survey, theXMM-Newton/2dF survey, and the Chandra Deep Field Survey indicate thatthe log N -log S distribution of normal galaxies is consistent with aEuclidean slope over a flux range of about 6 decades.

Radio sources in low-luminosity active galactic nuclei. IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample
We present the completed results of a high resolution radio imagingsurvey of all ( 200) low-luminosity active galactic nuclei (LLAGNs) andAGNs in the Palomar Spectroscopic Sample of all ( 488) bright northerngalaxies. The high incidences of pc-scale radio nuclei, with impliedbrightness temperatures ≳107 K, and sub-parsec jetsargue for accreting black holes in ≳50% of all LINERs andlow-luminosity Seyferts; there is no evidence against all LLAGNs beingmini-AGNs. The detected parsec-scale radio nuclei are preferentiallyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). The radio luminosity function (RLF) of PalomarSample LLAGNs and AGNs extends three orders of magnitude below, and iscontinuous with, that of “classical” AGNs. We find marginalevidence for a low-luminosity turnover in the RLF; nevertheless LLAGNsare responsible for a significant fraction of present day massaccretion. Adopting a model of a relativistic jet from Falcke &Biermann, we show that the accretion power output in LLAGNs is dominatedby the kinetic power in the observed jets rather than the radiatedbolometric luminosity. The Palomar LLAGNs and AGNs follow the samescaling between jet kinetic power and narrow line region (NLR)luminosity as the parsec to kilo-parsec jets in powerful radio galaxies.Eddington ratios {l_Edd} (=L_Emitted/L_Eddington) of≤10-1{-}10-5 are implied in jet models of theradio emission. We find evidence that, in analogy to Galactic black holecandidates, LINERs are in a “low/hard” state (gas poornuclei, low Eddington ratio, ability to launch collimated jets) whilelow-luminosity Seyferts are in a “high” state (gas richnuclei, higher Eddington ratio, less likely to launch collimated jets).In addition to dominating the radiated bolometric luminosity of thenucleus, the radio jets are energetically more significant thansupernovae in the host galaxies, and are potentially able to depositsufficient energy into the innermost parsecs to significantly slow thegas supply to the accretion disk.

Nuclear stellar discs in low-luminosity elliptical galaxies: NGC 4458 and 4478
We present the detection of nuclear stellar discs in the low-luminosityelliptical galaxies, NGC 4458 and 4478, which are known to host akinematically decoupled core. Using archival Hubble Space Telescopeimaging, and available absorption line-strength index data based onground-based spectroscopy, we investigate the photometric parameters andthe properties of the stellar populations of these central structures.Their scalelength, h, and face-on central surface brightness,μc0, fit on the μc0-hrelation for galaxy discs. For NGC 4458, these parameters are typicalfor nuclear discs, while the same quantities for NGC 4478 lie betweenthose of nuclear discs and the discs of discy ellipticals. We presentLick/Image Dissector Scanner (IDS) absorption line-strength measurementsof Hβ, Mgb and along the major and minor axes of thegalaxies. We model these data with simple stellar populations thataccount for the α/Fe overabundance. The counter-rotating centraldisc of NGC 4458 is found to have similar properties to the decoupledcores of bright ellipticals. This galaxy has been found to be uniformlyold despite being counter-rotating. In contrast, the cold central discof NGC 4478 is younger, richer in metals and less overabundant than themain body of the galaxy. This points to a prolonged star formationhistory, typical of an undisturbed disc-like, gas-rich (possiblypre-enriched) structure.

Nuclear activity and the dynamics of elliptical galaxies
This Letter looks for any correlation between the internal dynamics ofelliptical galaxies and the relatively mild nuclear activity found inmany such systems. We show that there is such a relation in the sensethat the active ellipticals tend to be significantly less rotationallysupported than their inactive cousins. The correlation can partly berelated to the galaxies' luminosities: the brightest galaxies tend to bemore active and less rotationally supported. However, even at lowerluminosities the active and inactive galaxies seem to havesystematically different dynamics. This variation suggests that thereare significant large-scale structural differences between active andinactive elliptical galaxies, and hence that the existence of both typesof system cannot just be the result of random sporadic nuclear activity.

The relationship between the Sérsic law profiles measured along the major and minor axes of elliptical galaxies
In this paper we discuss the reason why the parameters of theSérsic model best-fitting the major axis light profile ofelliptical galaxies can differ significantly from those derived for theminor axis profile. We show that this discrepancy is a naturalconsequence of the fact that the isophote eccentricity varies with theradius of the isophote and present a mathematical transformation thatallows the minor axis Sérsic model to be calculated from themajor axis model, provided that the elliptical isophotes are aligned andconcentric and that their eccentricity can be represented by a wellbehaved, though quite general, function of the radius. When there is novariation in eccentricity only the effective radius changes in theSérsic model, while for radial-dependent eccentricity thetransformation, which allows the minor axis Sérsic model to becalculated from the major axis model is given by the Lerch Φtranscendental function. The proposed transformation was tested usingphotometric data for 28 early-type galaxies.

The ACS Virgo Cluster Survey. II. Data Reduction Procedures
The ACS Virgo Cluster Survey is a large program to carry out multicolorimaging of 100 early-type members of the Virgo Cluster using theAdvanced Camera for Surveys (ACS) on the Hubble Space Telescope. DeepF475W and F850LP images (~SDSS g and z) are being used to study thecentral regions of the program galaxies, their globular cluster systems,and the three-dimensional structure of Virgo itself. In this paper, wedescribe in detail the data reduction procedures used for the survey,including image registration, drizzling strategies, the computation ofweight images, object detection, the identification of globular clustercandidates, and the measurement of their photometric and structuralparameters.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

The ACS Virgo Cluster Survey. I. Introduction to the Survey
The Virgo Cluster is the dominant mass concentration in the LocalSupercluster and the largest collection of elliptical and lenticulargalaxies in the nearby universe. In this paper, we present anintroduction to the ACS Virgo Cluster Survey: a program to image, in theF475W and F850LP bandpasses (~Sloan g and z), 100 early-type galaxies inthe Virgo Cluster using the Advanced Camera for Surveys on the HubbleSpace Telescope. We describe the selection of the program galaxies andtheir ensemble properties, the choice of filters, the field placementand orientation, the limiting magnitudes of the survey, coordinatedparallel observations of 100 ``intergalactic'' fields with WFPC2, andsupporting ground-based spectroscopic observations of the programgalaxies. In terms of depth, spatial resolution, sample size, andhomogeneity, this represents the most comprehensive imaging survey todate of early-type galaxies in a cluster environment. We brieflydescribe the main scientific goals of the survey, which include themeasurement of luminosities, metallicities, ages, and structuralparameters for the many thousands of globular clusters associated withthese galaxies, a high-resolution isophotal analysis of galaxiesspanning a factor of ~450 in luminosity and sharing a commonenvironment, the measurement of accurate distances for the full sampleof galaxies using the method of surface brightness fluctuations, and adetermination of the three-dimensional structure of Virgo itself.ID="FN1"> 1Based on observations with the NASA/ESA Hubble SpaceTelescope obtained at the Space Telescope Science Institute, which isoperated by the association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555.

A Correlation between Light Profile and [Mg/Fe] Abundance Ratio in Early-Type Galaxies
We explore possible correlations between light profile shapes, asparameterized by the Sérsic index n or the concentration indexCre(1/3), and relevant stellar populationparameters in early-type galaxies. Mean luminosity-weighted ages,metallicities, and abundance ratios were obtained from spectra of veryhigh signal-to-noise ratio and stellar population models that synthesizegalaxy spectra at the resolution given by their velocity dispersions,σ, in combination with an age indicator(Hγσ) that is virtually free of the effects ofmetallicity. We do not find any significant correlation between n [orCre(1/3)] and mean age or metallicity, but we dofind a strong positive correlation of the shape parameters with Mg/Feabundance ratio. This dependence is as strong as the Mg/Fe-σ andCre(1/3)-σ relations. We speculate thatearly-type galaxies settle up their structure on timescales in agreementwith those imposed by their Mg/Fe ratios. This suggests that the globalstructure of larger galaxies, with larger Mg/Fe ratios and shortertimescales, was already in place at high z, without experiencing asignificant time evolution.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Παρθένος
Right ascension:12h30m17.50s
Declination:+12°19'40.0"
Aparent dimensions:1.738′ × 1.413′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4478
HYPERLEDA-IPGC 41297
J/AJ/90/1681VCC 1279

→ Request more catalogs and designations from VizieR