Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4691


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Late-Time Radio Observations of 68 Type Ibc Supernovae: Strong Constraints on Off-Axis Gamma-Ray Bursts
We present late-time radio observations of 68 local Type Ibc supernovae,including six events with broad optical absorption lines(``hypernovae''). None of these objects exhibit radio emissionattributable to off-axis gamma-ray burst jets spreading into our line ofsight. Comparison with our afterglow models reveals the followingconclusions. (1) Less than ~10% of Type Ibc supernovae are associatedwith typical gamma-ray bursts initially directed away from our line ofsight; this places an empirical constraint on the GRB beaming factor of<~104, corresponding toan average jet opening angle, θj>~0.8d. (2) Thisholds in particular for the broad-lined supernovae (SNe 1997dq, 1997ef,1998ey, 2002ap, 2002bl, and 2003jd), which have been argued to host GRBjets. Our observations reveal no evidence for typical (or evensubenergetic) GRBs and rule out the scenario in which every broad-linedSN harbors a GRB at the 84% confidence level. Their large photosphericvelocities and asymmetric ejecta (inferred from spectropolarimetry andnebular spectroscopy) appear to be characteristic of the nonrelativisticSN explosion and do not necessarily imply the existence of associatedGRB jets.

The evolution of actively star-forming galaxies in the mid-infrared
In this paper we analyze the evolution of actively star-forming galaxiesin the mid-infrared (MIR). This spectral region, characterized bycontinuum emission by hot dust and by the presence of strong emissionfeatures generally ascribed to polycyclic aromatic hydrocarbon (PAH)molecules, is the most strongly affected by the heating processesassociated with star formation and/or active galactic nuclei (AGNs).Following the detailed observational characterization of galaxies in theMIR by the Infrared Space Observatory (ISO), we have updated themodelling of this spectral region in our spectrophotometric modelGRASIL. In the diffuse component we have updated the treatment of PAHsaccording to the model by Li & Draine. As for the dense phase of theinterstellar medium associated with the star-forming regions, themolecular clouds, we strongly decrease the abundance of PAHs as comparedto that in the cirrus, based on the observational evidence of the lackor weakness of PAH bands close to the newly formed stars, possibly dueto the destruction of the molecules in strong ultraviolet fields. Therobustness of the model is checked by fitting near-infrared to radiobroad-band spectra and the corresponding detailed MIR spectra of a largesample of galaxies, at once. With this model, we have analyzed thelarger sample of actively star-forming galaxies by Dale et al. We showthat the observed trends of galaxies in the ISO-IRAS-radio colour-colourplots can be interpreted in terms of the different evolutionary phasesof star formation activity, and the consequent different dominance inthe spectral energy distribution of the diffuse or dense phase of theISM. We find that the observed colours indicate a surprising homogeneityof the starburst phenomenon, allowing only a limited variation of themost important physical parameters, such as the optical depth of themolecular clouds, the time-scale of the escape of young stars from theirfor mation sites, and the gas consumption time-scale. In this paper wedo not attempt to reproduce the far-infrared coolest region in thecolour-colour plots, as we concentrate on models meant to reproduceactive star-forming galaxies, but we discuss possible requirements of amore complex modelling for the coldest objects.

How large are the bars in barred galaxies?
I present a study of the sizes (semimajor axes) of bars in discgalaxies, combining a detailed R-band study of 65 S0-Sb galaxies withthe B-band measurements of 70 Sb-Sd galaxies from Martin (1995). As hasbeen noted before with smaller samples, bars in early-type (S0-Sb)galaxies are clearly larger than bars in late-type (Sc-Sd) galaxies;this is true both for relative sizes (bar length as fraction ofisophotal radius R25 or exponential disc scalelength h) andabsolute sizes (kpc). S0-Sab bars extend to ~1-10 kpc (mean ~ 3.3 kpc),~0.2-0.8R25 (mean ~ 0.38R25) and ~0.5-2.5h (mean ~1.4h). Late-type bars extend to only ~0.5-3.5 kpc,~0.05-0.35R25 and 0.2-1.5h their mean sizes are ~1.5 kpc, ~0.14R25 and ~0.6h. Sb galaxies resemble earlier-type galaxiesin terms of bar size relative to h; their smallerR25-relative sizes may be a side effect of higher starformation, which increases R25 but not h. Sbc galaxies form atransition between the early- and late-type regimes. For S0-Sbcgalaxies, bar size correlates well with disc size (both R25and h); these correlations are stronger than the known correlation withMB. All correlations appear to be weaker or absent forlate-type galaxies; in particular, there seems to be no correlationbetween bar size and either h or MB for Sc-Sd galaxies.Because bar size scales with disc size and galaxy magnitude for mostHubble types, studies of bar evolution with redshift should selectsamples with similar distributions of disc size or magnitude(extrapolated to present-day values); otherwise, bar frequencies andsizes could be mis-estimated. Because early-type galaxies tend to havelarger bars, resolution-limited studies will preferentially find bars inearly-type galaxies (assuming no significant differential evolution inbar sizes). I show that the bars detected in Hubble Space Telescope(HST) near-infrared(IR) images at z~ 1 by Sheth et al. have absolutesizes consistent with those in bright, nearby S0-Sb galaxies. I alsocompare the sizes of real bars with those produced in simulations anddiscuss some possible implications for scenarios of secular evolutionalong the Hubble sequence. Simulations often produce bars as large as(or larger than) those seen in S0-Sb galaxies, but rarely any as smallas those in Sc-Sd galaxies.

Antitruncation of Disks in Early-Type Barred Galaxies
The disks of spiral galaxies are commonly thought to be truncated: theradial surface brightness profile steepens sharply beyond a certainradius (3-5 inner disk scale lengths). Here we present the radialbrightness profiles of a number of barred S0-Sb galaxies with theopposite behavior: their outer profiles are distinctly shallower inslope than the main disk profile. We term these ``antitruncations'' theyare found in at least 25% of a larger sample of barred S0-Sb galaxies.There are two distinct types of antitruncations. About one-third show afairly gradual transition and outer isophotes that are progressivelyrounder than the main disk isophotes, suggestive of a disk embeddedwithin a more spheroidal outer zone-either the outer extent of the bulgeor a separate stellar halo. But the majority of the profiles have rathersharp surface brightness transitions to the shallower, outer exponentialprofile and, crucially, outer isophotes that are not significantlyrounder than the main disk; in the Sab-Sb galaxies, the outer isophotesinclude visible spiral arms. This suggests that the outer light is stillpart of the disk. A subset of these profiles are in galaxies withasymmetric outer isophotes (lopsided or one-armed spirals), suggestingthat interactions may be responsible for at least some of the disklikeantitruncations.

Simulating the Spitzer Mid-Infrared Color-Color Diagrams
We use a simple parameterization of the mid-IR spectra of a wide rangeof galaxy types in order to predict their distribution in the InfraredArray Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and MultibandPhotometer for Spitzer 24 μm color-color diagrams. We distinguishthree basic spectral types by the energetically dominant component inthe 3-12 μm regime: stellar-dominated, polycyclic aromatichydrocarbon (PAH)-dominated, and continuum-dominated. We use a Markovchain Monte Carlo approach to arrive at a more systematic and robustrepresentation of the mid-IR spectra of galaxies than do moretraditional approaches. We find that IRAC color-color plots are wellsuited to distinguishing the above spectral types, while the addition of24 μm data allows us to suggest practical three-color cuts thatpreferentially select higher redshift sources of a specific type. Wecompare our simulations with the color-color plot obtained by theSpitzer First Look Survey and find reasonable agreement. Lastly, wediscuss other applications as well as future directions for this work.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

Warm dust and aromatic bands as quantitative probes of star-formation activity
We combine samples of spiral galaxies and starburst systems observedwith ISOCAM on board ISO to investigate the reliability of mid-infrareddust emission as a quantitative tracer of star formation activity. Thetotal sample covers very diverse galactic environments and probes a muchwider dynamic range in star formation rate density than previous similarstudies. We find that both the monochromatic 15 μm continuum and the5-8.5 μm emission constitute excellent indicators of the starformation rate as quantified by the Lyman continuum luminosityLLyc, within specified validity limits which are differentfor the two tracers. Normalized to projected surface area, the 15 μmcontinuum luminosity Σ15 μm,ct is directlyproportional to ΣLyc over several orders of magnitude.Two regimes are distinguished from the relative offsets in the observedrelationship: the proportionality factor increases by a factor of ≈5between quiescent disks in spiral galaxies, and moderate to extremestar-forming environments in circumnuclear regions of spirals and instarburst systems. The transition occurs near ΣLyc˜ 102 Lȯ pc-2 and isinterpreted as due to very small dust grains starting to dominate theemission at 15 μm over aromatic species above this threshold. The5-8.5 μm luminosity per unit projected area is also directlyproportional to the Lyman continuum luminosity, with a single conversionfactor from the most quiescent objects included in the sample up toΣLyc ˜ 104 Lȯpc-2, where the relationship then flattens. The turnover isattributed to depletion of aromatic band carriers in the harsherconditions prevailing in extreme starburst environments. The observedrelationships provide empirical calibrations useful for estimating starformation rates from mid-infrared observations, much less affected byextinction than optical and near-infrared tracers in deeply embedded HII regions and obscured starbursts, as well as for theoreticalpredictions from evolutionary synthesis models.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries: France, Germany, TheNetherlands, and the UK), and with participation of ISAS and NASA.

Elusive active galactic nuclei
A fraction of active galactic nuclei do not show the classicalSeyfert-type signatures in their optical spectra, i.e. they areoptically `elusive'. X-ray observations are an optimal tool to identifythis class of objects. We combine new Chandra observations with archivalX-ray data in order to obtain a first estimate of the fraction ofelusive active galactic nuclei (AGN) in local galaxies and to constraintheir nature. Our results suggest that elusive AGN have a local densitycomparable to or even higher than optically classified Seyfert nuclei.Most elusive AGN are heavily absorbed in the X-rays, with gas columndensities exceeding 1024 cm-2, suggesting thattheir peculiar nature is associated with obscuration. It is likely thatin elusive AGN the nuclear UV source is completely embedded and theionizing photons cannot escape, which prevents the formation of aclassical narrow-line region. Elusive AGN may contribute significantlyto the 30-keV bump of the X-ray background.

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

An Imaging Survey of Early-Type Barred Galaxies
This paper presents the results of a high-resolution imaging survey,using both ground-based and Hubble Space Telescope images, of a completesample of nearby barred S0-Sa galaxies in the field, with a particularemphasis on identifying and measuring central structures within thebars: secondary bars, inner disks, nuclear rings and spirals, andoff-plane dust. A discussion of the frequency and statistical propertiesof the various types of inner structures has already been published.Here we present the data for the individual galaxies and measurements oftheir bars and inner structures. We set out the methods we use to findand measure these structures, and how we discriminate between them. Inparticular, we discuss some of the deficiencies of ellipse fitting ofthe isophotes, which by itself cannot always distinguish between bars,rings, spirals, and dust, and which can produce erroneous measurementsof bar sizes and orientations.

CO (3-2) Observations of Early-Type Galaxies with the Heinrich Hertz Telescope
We present Heinrich Hertz Telescope CO (3-2) observations of a sample of10 early-type galaxies detected both in far-infrared (IRAS) and in CO(1-0). Six of the objects (i.e., 60% of the sample) were detected in theCO (3-2) transition. Comparison of the beam-matched CO (3-2)/CO (1-0)and CO (2-1)/CO (1-0) intensity ratios with simple large velocitygradient and photodissociation region models reveals that early-typeobjects can be broadly classified into two categories. The majority ofobjects have a molecular interstellar medium of moderate density(nH2<=1000 cm-3) and temperature(T<=30 K). Two objects, NGC 3593 and NGC 4691, show indications ofquite denser and warmer environments, as well as gradients in theirphysical properties, compatible with their classification as starbursts.The heating source of the molecular gas and dust in all the objects inour sample appears to be ongoing star formation.

Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory Spectra, Near-Infrared Continuum, and Mid-Infrared Emission Features
We present ISOPHOT spectra of the regions 2.5-4.9 μm and 5.8-11.6μm for a sample of 45 disk galaxies from the US Infrared SpaceObservatory Key Project on Normal Galaxies. The galaxies were selectedto span the range in global properties of normal, star-forming diskgalaxies in the local universe. The spectra can be decomposed into threespectral components: (1) continuum emission from stellar photospheres,which dominates the near-infrared (NIR; 2.5-4.9 μm) spectral region;(2) a weak NIR excess continuum, which has a color temperature of~103 K, carries a luminosity of a few percent of the totalfar-infrared (FIR) dust luminosity LFIR and most likelyarises from the interstellar medium (ISM); and (3) the well-known broademission features at 6.2, 7.7, 8.6, and 11.3 μm, which are generallyattributed to aromatic carbon particles. These aromatic features inemission (AFEs) dominate the mid-infrared (MIR; 5.8-11.6 μm) part ofthe spectrum and resemble the so-called type A spectra observed in manynonstellar sources and the diffuse ISM in our own Galaxy. The fewnotable exceptions include NGC 4418, where a dust continuum replaces theAFEs in MIR, and NGC 1569, where the AFEs are weak and the strongestemission feature is [S IV] 10.51 μm. The relative strengths of theAFEs vary by 15%-25% among the galaxies. However, little correlation isseen between these variations and either IRAS 60 μm/100 μm fluxdensity ratio R(60/100) or the FIR/blue luminosity ratioLFIR/LB, two widely used indicators of the currentstar formation activity, suggesting that the observed variations are nota consequence of the radiation field differences among the galaxies. Wedemonstrate that the NIR excess continuum and AFE emission arecorrelated, suggesting that they are produced by similar mechanisms andsimilar (or the same) material. On the other hand, as the current starformation activity increases, the overall strengths of the AFEs and theNIR excess continuum drop significantly with respect to that of the FIRemission from large dust grains. In particular, the summed luminosity ofthe AFEs falls from ~0.2 LFIR for the most ``IR-quiescent''galaxies to ~0.1 LFIR for the most ``IR-active'' galaxies.This is likely a consequence of the preferential destruction in intenseradiation fields of the small carriers responsible for the NIR/AFEemission.Based on observations with ISO, an ESA project with instruments fundedby ESA member states (especially the PI countries, France, Germany, theNetherlands, and the United Kingdom) and with the participation of ISASand NASA.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Bar strengths in spiral galaxies estimated from 2MASS images
Non-axisymmetric forces are presented for a sample of 107 spiralgalaxies, of which 31 are barred (SB) and 53 show nuclear activity. As adata base we use JHK images from the 2 Micron All-sky Survey, and thenon-axisymmetries are characterized by the ratio of the tangential forceto the mean axisymmetric radial force field, following Buta & Block.Bar strengths have an important role in many extragalactic problems andtherefore it is important to verify that the different numerical methodsapplied for calculating the forces give mutually consistent results. Weapply both direct Cartesian integration and a polar grid integrationutilizing a limited number of azimuthal Fourier components of density.We find that the bar strength is independent of the method used toevaluate the gravitational potential. However, because of thedistance-dependent smoothing by Fourier decomposition, the polar methodis more suitable for weak and noisy images. The largest source ofuncertainty in the derived bar strength appears to be the uncertainty inthe vertical scaleheight, which is difficult to measure directly formost galaxies. On the other hand, the derived bar strength is ratherinsensitive to the possible gradient in the vertical scaleheight of thedisc or to the exact model of the vertical density distribution,provided that the same effective vertical dispersion is assumed in allmodels. In comparison with the pioneering study by Buta & Block, thebar strength estimate is improved here by taking into account thedependence of the vertical scaleheight on the Hubble type: we find thatfor thin discs bar strengths are stronger than for thick discs by anamount that may correspond to as much as one bar strength class. Weconfirm the previous result by Buta and co-workers showing that thedispersion in bar strength is large among all the de Vaucouleurs opticalbar classes. In the near-infrared 40 per cent of the galaxies in oursample have bars (showing constant phases in the m= 2 Fourier amplitudesin the bar region), while in the optical band one-third of these barsare obscured by dust. Significant non-axisymmetric forces can also beinduced by the spiral arms, generally in the outer parts of the galacticdiscs, which may have important implications on galaxy evolution.Possible biases of the selected sample are also studied: we find thatthe number of bars identified drops rapidly when the inclination of thegalactic disc is larger than 50°. A similar bias is found in theThird Reference Catalogue of Bright Galaxies, which might be of interestwhen comparing bar frequencies at high and low redshifts.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Arm Structure in Anemic Spiral Galaxies
Anemic galaxies have less prominent star formation than normal galaxiesof the same Hubble type. Previous studies showed they are deficient intotal atomic hydrogen but not in molecular hydrogen. Here we compare thecombined surface densities of H I and H2 at mid-disk radiiwith the Kennicutt threshold for star formation. The anemic galaxies arebelow the threshold, which explains their lack of prominent starformation, but they are not much different than other early-typegalaxies, which also tend to be below threshold. The spiral waveamplitudes of anemic and normal galaxies were also compared, usingimages in B and J passbands from the OSU Bright Spiral Galaxy Survey.Anemic galaxies have normal spiral wave properties too, with the sameamplitudes and radial dependencies as other galaxies of the same armclass. Because of the lack of gas, spiral waves in early-type galaxiesand anemics do not have a continuous supply of stars with low velocitydispersions to maintain a marginally stable disk. As a result, they areeither short lived, evolving toward lenticulars and S0 types in only afew rotations at mid-disk, or they are driven by the asymmetriesassociated with gas removal in the cluster environment.

Double Bars, Inner Disks, and Nuclear Rings in Early-Type Disk Galaxies
We present results from a survey of an unbiased sample of 38 early-type(S0-Sa), low-inclination, optically barred galaxies in the field, usingimages both from the ground and from space. Our goal was to find andcharacterize central stellar and gaseous structures: secondary bars,inner disks, and nuclear rings. We find that bars inside bars aresurprisingly common: at least one-quarter of the sample galaxies(possibly as many as 40%) are double barred, with no preference forHubble type or the strength of the primary bar. A typical secondary baris ~12% of the size of its primary bar and extends to 240-750 pc inradius. Secondary bars are not systematically either parallel orperpendicular to the primary; we see cases where they lead the primarybar in rotation and others where they trail, which supports thehypothesis that the two bars of a double-bar system rotateindependently. We see no significant effect of secondary bars on nuclearactivity: our double-barred galaxies are no more likely to harbor aSeyfert or LINER nucleus than our single-barred galaxies. We findkiloparsec-scale inner disks in at least 20% of our sample; they occuralmost exclusively in S0 galaxies. These disks are on average 20% thesize of their host bar and show a wider range of relative sizes than dosecondary bars. Nuclear rings are present in about a third of oursample. Most of these rings are dusty, sites of current or recent starformation, or both; such rings are preferentially found in Sa galaxies.Three S0 galaxies (8% of the sample, but 15% of the S0's) appear to havepurely stellar nuclear rings, with no evidence for dust or recent starformation. The fact that these central stellar structures are so commonindicates that the inner regions of early-type barred galaxies typicallycontain dynamically cool and disklike structures. This is especiallytrue for S0 galaxies, where secondary bars, inner disks, and/or stellarnuclear rings are present at least two-thirds of the time. If weinterpret nuclear rings, secondary bars, and (possibly) inner disks andnuclear spirals as signs of inner Lindblad resonances (ILRs), thenbetween one and two-thirds of barred S0-Sa galaxies show evidence forILRs.

The Visibility of Galactic Bars and Spiral Structure at High Redshifts
We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.

Nebular Spectra of the Type Ic Supernovae 1997B and 1997X
New spectra of the Type Ic supernovae 1997B and 1997X at nebular phaseare shown. Although one of them, SN 1997X, was studied with some detailaround its maximum and its properties compared with other well-known SNeIb/c, both of these events were later followed within its nebular phase.Our aim is to explore the behavior of these supernovae when they reachedthe nebular phase. Comparisons with data of other SNe Ic at similarnebular phases, mainly by using spectra from the Canarias Database, arealso performed. The results derived from these comparisons reinforce thequite heterogeneous behavior found in SNe Ic nebular spectra. Inparticular, the widths of the [O I] and [Ca II] emissions found in SN1997B are wider than the average for Type Ic events, while the [O I]width of SN 1997X is narrower than the average and is nearly comparableto typical [O I] widths found in SNe Ib. Based on observations made withthe 2.5 m Isaac Newton Telescope and the 4.2 m William HerschelTelescope operated on La Palma by the Isaac Newton Group of Telescopesat Observatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.

Supernovae in the nuclear regions of starburst galaxies
The feasibility of using near-infrared observations to discoversupernovae in the nuclear and circumnuclear regions of nearby starburstgalaxies is investigated. We provide updated estimates of the intrinsiccore-collapse supernova rates in these regions. We discuss the problemof extinction, and present new estimates of the extinction towards 33supernova remnants in the starburst galaxy M 82. This is done using Hiand H2 column density measurements. We estimate the molecularto atomic hydrogen mass ratio to be 7.4+/-1.0 in M 82. We have assemblednear-infrared photometric data for a total of 13 core-collapsesupernovae, some unpublished hitherto. This constitutes the largestdatabase of infrared light curves for such events. We show that theinfrared light curves fall into two classes, `ordinary' and `slowlydeclining'. Template JHKL light curves are derived for both classes. Forordinary core-collapse supernovae, the average peak JHKL absolutemagnitudes are -18.4, -18.6, -18.6 and -19.0 respectively. The slowlydeclining core-collapse supernovae are found to be significantly moreluminous than the ordinary events, even at early times, having averagepeak JHKL absolute magnitudes of -19.9, -20.0, -20.0 and -20.4respectively. We investigate the efficiency of a computerized imagesubtraction method in supernova detection. We then carry out a MonteCarlo simulation of a supernova search using K-band images of NGC 5962.The effects of extinction and observing strategy are discussed. Weconclude that a modest observational programme will be able to discovera number of nuclear supernovae.

Observations of five supernovae in 1995 1997
We present the results of photometric observations of the type Iasupernovae SN 1995al, 1996bo, 1996bk, the type Ib/c supernova SN 1997X,and the type II supernova SN 1996an. The photometric characteristics ofSN 1995al are close to the average for type Ia supernovae. Our analysishas revealed possible peculiarities in the light-curve shape anddeviations from the average photometric parameters for SN 1996bk and1996bo. Sn 1996an probably belongs to type IIP. The light curve of SN1997X resembles that of the type Ic supernova SN 1994I. Light-curveparameters and absolute magnitude estimates are presented.

Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium
The most important cooling lines of the neutral interstellar medium(ISM) lie in the far-infrared (FIR). We present measurements by theInfrared Space Observatory Long Wavelength Spectrometer of seven linesfrom neutral and ionized ISM of 60 normal, star-forming galaxies. Thegalaxy sample spans a range in properties such as morphology, FIR colors(indicating dust temperature), and FIR/blue ratios (indicating starformation activity and optical depth). In two-thirds of the galaxies inthis sample, the [C II] line flux is proportional to FIR dust continuum.The other one-third show a smooth decline inL[CII]/LFIR with increasing Fν(60μm)/Fν(100 μm) and LFIR/LB,spanning a range of a factor of more than 50. Two galaxies at the warmand active extreme of the range haveL[CII]/LFIR<2×10-4 (3 σupper limit). This is due to increased positive grain charge in thewarmer and more active galaxies, which leads to less efficient heatingby photoelectrons from dust grains. The ratio of the two principalphotodissociation region (PDR) cooling linesL[OI]/L[CII] shows a tight correlation withFν(60 μm)/Fν(100 μm), indicating thatboth gas and dust temperatures increase together. We derive atheoretical scaling between [N II] (122 μm) and [C II] from ionizedgas and use it to separate [C II] emission from neutral PDRs and ionizedgas. Comparison of PDR models of Kaufman et al. with observed ratios of(1) L[OI]/L[CII] and(L[CII]+L[OI])/LFIR and (2)L[OI]/LFIR and Fν(60μm)/Fν(100 μm) yields far-UV flux G0 andgas density n. The G0 and n values estimated from the twomethods agree to better than a factor of 2 and 1.5, respectively, inmore than half the sources. The derived G0 and n correlatewith each other, and G0 increases with n asG0~nα, where α~1.4 . We interpret thiscorrelation as arising from Strömgren sphere scalings if much ofthe line and continuum luminosity arises near star-forming regions. Thehigh values of PDR surface temperature (270-900 K) and pressure(6×104-1.5×107 K cm-3)derived also support the view that a significant part of grain and gasheating in the galaxies occurs very close to star-forming regions. Thedifferences in G0 and n from galaxy to galaxy may be due todifferences in the physical properties of the star-forming clouds.Galaxies with higher G0 and n have larger and/or denserstar-forming clouds.

The relationship between star formation rates and mid-infrared emission in galactic disks
The Hα and mid-infrared mean disk surface brightnesses arecompared in a sample of nearby spirals observed by ISOCAM. This showsthat, in spiral disks, dust emission at 7 and 15 mu m provides areasonable star formation tracer. The fact that the 15 to 7 mu m fluxratio is nearly constant in various global exciting conditions indicatesa common origin, namely the aromatic infrared band carriers, and impliesthat at these wavelengths, dust emission from the disks of normalgalaxies is dominated by photodissociation regions and not by H Iiregions themselves. We use this newly-found correlation between themid-infrared and the Hα line to investigate the nature of the linkbetween the far-infrared (60 and 100 mu m) and Hα . Although theseparation of the central regions from the disk is impossible to achievein the far-infrared, we show that a circumnuclear contribution to thedust emission, having no equivalent counterpart in Hα , is mostlikely responsible for the well-known non-linearity between far-infraredand Hα fluxes in spiral galaxies. We derive a calibration of 7 and15 mu m fluxes in terms of star formation rates from a primarycalibration of Hα in the literature, and also outline theapplicability limits of the proposed conversion, which should not beblindly extrapolated to objects whose nature is unknown. Based onobservations with ISO, an ESA project with instruments funded by ESAMember States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.

The impact of bars on the mid-infrared dust emission of spiral galaxies: global and circumnuclear properties
We study the mid-infrared properties of a sample of 69 nearby spiralgalaxies, selected to avoid Seyfert activity contributing a significantfraction of the central energetics, or strong tidal interaction, and tohave normal infrared luminosities. These observations were obtained withISOCAM, which provides an angular resolution of the order of 10arcsec(half-power diameter of the point spread function) and low-resolutionspectro-imaging information. Between 5 and 18 mu m, we mainly observetwo dust phases, aromatic infrared bands and very small grains, both outof thermal equilibrium. On this sample, we show that the globalF15/F_7 colors of galaxies are very uniform, the onlyincrease being found in early-type strongly barred galaxies, consistentwith previous IRAS studies. The F15/F_7 excesses areunambiguously due to galactic central regions where bar-inducedstarbursts occur. However, the existence of strongly barred early-typegalaxies with normal circumnuclear colors indicates that therelationship between a distortion of the gravitational potential and acentral starburst is not straightforward. As the physical processes atwork in central regions are in principle identical in barred andunbarred galaxies, and since this is where the mid-infrared activity ismainly located, we investigate the mid-infrared circumnuclear propertiesof all the galaxies in our sample. We show how surface brightnesses andcolors are related to both the available molecular gas content and themean age of stellar populations contributing to dust heating. Therefore,the star formation history in galactic central regions can beconstrained by their position in a color-surface brightness mid-infrareddiagram. Based on observations with ISO, an ESA project with instrumentsfunded by ESA Member States (especially the PI countries: France,Germany, the Netherlands and the UK) and with the participation of ISASand NASA.

An atlas of mid-infrared dust emission in spiral galaxies
We present maps of dust emission at 7 mu m and 15 mu m/7 mu m intensityratios of selected regions in 43 spiral galaxies observed with ISOCAM.This atlas is a complement to studies based on these observations,dealing with star formation in centers of barred galaxies and in spiraldisks. It is accompanied by a detailed description of data reduction andan inventory of generic morphological properties in groups definedaccording to bar strength and HI gas content. Based on observations withISO, an ESA project with instruments funded by ESA Member States(especially the PI countries: France, Germany, The Netherlands and theUK) and with the participation of ISAS and NASA.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Jungfrau
Right ascension:12h48m13.60s
Declination:-03°19'57.0"
Aparent dimensions:3.236′ × 2.692′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4691
HYPERLEDA-IPGC 43238

→ Request more catalogs and designations from VizieR