Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 4238


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

[O II] as a Star Formation Rate Indicator
We investigate the [O II] emission line as a star formation rate (SFR)indicator using integrated spectra of 97 galaxies from the Nearby FieldGalaxies Survey (NFGS). The sample includes all Hubble types andcontains SFRs ranging from 0.01 to 100 Msolaryr-1. We compare the Kennicutt [O II] and Hα SFRcalibrations and show that there are two significant effects thatproduce disagreement between SFR([O II]) and SFR(Hα): reddeningand metallicity. Differences in the ionization state of the interstellarmedium do not contribute significantly to the observed differencebetween SFR([O II]) and SFR(Hα) for the NFGS galaxies withmetallicities log(O/H)+12>~8.5. The Kennicutt [O II]-SFR relationassumes a typical reddening for nearby galaxies; in practice, thereddening differs significantly from sample to sample. We derive a newSFR([O II]) calibration that does not contain a reddening assumption.Our new SFR([O II]) calibration also provides an optional correction formetallicity. Our SFRs derived from [O II] agree with those derived fromHα to within 0.03-0.05 dex. We show that the reddening, E(B-V),increases with intrinsic (i.e., reddening-corrected) [O II] luminosityfor the NFGS sample. We apply our SFR([O II]) calibration withmetallicity correction to two samples: high-redshift 0.8

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

The Hα and Infrared Star Formation Rates for the Nearby Field Galaxy Survey
We investigate the Hα and infrared star formation rate (SFR)diagnostics for galaxies in the Nearby Field Galaxy Survey (NFGS). Forthe 81 galaxies in our sample, we derive Hα fluxes (included here)from integrated spectra. There is a strong correlation between the ratioof far-infrared to optical luminosities L(FIR)/L(Hα) and theextinction E(B-V) measured with the Balmer decrement. Before reddeningcorrection, the SFR(IR) and SFR(Hα) are related to each other by apower law: SFR(IR)=(2.7+/-0.3)SFR(Hα)1.30+/-0.06.Correction of the SFR(Hα) for extinction using the Balmerdecrement and a classical reddening curve both reduces the scatter inthe SFR(IR)-SFR(Hα) correlation and results in a much closeragreement between the two SFR indicators;SFR(IR)=(0.91+/-0.04)SFR(Hαcorr)1.07+/-0.03.SFR(IR) and SFR(Hα) agree to ~10%. This SFR relationship spans 4orders of magnitude and holds for all Hubble types with IRAS detectionsin the NFGS. A constant ratio between the SFR(IR) and SFR(Hα) forall Hubble types, including early types (S0-Sab), suggests that the IRemission in all these objects results from a young stellar population.

Starbursts versus Truncated Star Formation in Nearby Clusters of Galaxies
We present long-slit spectroscopy, B- and R-bandpass imaging, and 21 cmobservations of a sample of early-type galaxies in nearby clusters,which are known to be either in a star-forming phase or to have had starformation that recently terminated. From the long-slit spectra, obtainedwith the Blanco 4 m telescope, we find that emission lines in thestar-forming cluster galaxies are significantly more centrallyconcentrated than in a sample of field galaxies. The broadband imagingreveals that two currently star-forming early-type galaxies in thePegasus I cluster have blue nuclei, again indicating that recent starformation has been concentrated. In contrast, the two galaxies for whichstar formation has already ended show no central color gradient. ThePegasus I galaxy with the most evident signs of ongoing star formation(NGC 7648), exhibits signatures of a tidal encounter. Neutral hydrogenobservations of that galaxy with the Arecibo radio telescope reveal thepresence of ~4×108 Msolar of H I. Areciboobservations of other current or recent star-forming early-type galaxiesin Pegasus I indicate smaller amounts of gas in one of them, and onlyupper limits in others. These observations indicate that NGC 7648 in thePegasus I cluster owes its present star formation episode to some formof tidal interaction. The same may be true for the other galaxies withcentralized star formation, but we cannot rule out the possibility thattheir outer disks have been removed via ram pressure stripping, followedby rapid quenching of star formation in the central region.

Spectrophotometry of Nearby Field Galaxies: The Data
We have obtained integrated and nuclear spectra as well as U, B, Rsurface photometry for a representative sample of 196 nearby galaxies.These galaxies span the entire Hubble sequence in morphological type, aswell as a wide range of luminosities (MB=-14 to -22). Here wepresent the spectrophotometry for these galaxies. The selection of thesample and the U, B, R surface photometry is described in a companionpaper. Our goals for the project include measuring the current starformation rates and metallicities of these galaxies, and elucidatingtheir star formation histories, as a function of luminosity andmorphology. We thereby extend the work of Kennicutt to lower luminositysystems. We anticipate that our study will be useful as a benchmark forstudies of galaxies at high redshift. We describe the observing, datareduction, and calibration techniques and demonstrate that ourspectrophotometry agrees well with that of Kennicutt. The spectra spanthe range 3550-7250 Å at a resolution (FWHM) of ~6 Å andhave an overall relative spectrophotometric accuracy of ~+/-6%. Wepresent a spectrophotometric atlas of integrated and nuclear rest-framespectra as well as tables of equivalent widths and synthetic colors. Theatlas and tables of measurements will be made available electronically.We study the correlations of galaxy properties determined from thespectra and images. Our findings include: (1) galaxies of a givenmorphological class display a wide range of continuum shapes andemission-line strengths if a broad range of luminosities are considered,(2) emission-line strengths tend to increase and continua tend to getbluer as the luminosity decreases, and (3) the scatter on the generalcorrelation between nuclear and integrated Hα emission-linestrengths is large.

Surface Photometry of Nearby Field Galaxies: The Data
We have obtained integrated spectra and multifilter photometry for arepresentative sample of ~200 nearby galaxies. These galaxies span theentire Hubble sequence in morphological type, as well as a wide range ofluminosities (MB=-14 to -22) and colors (B-R=0.4-1.8). Herewe describe the sample selection criteria and the U, B, R surfacephotometry for these galaxies. The spectrophotometric results will bepresented in a companion paper. Our goals for the project includemeasuring the current star formation rates and metallicity of thesegalaxies, and elucidating their star formation histories, as a functionof luminosity and morphology. We thereby extend the work of Kennicutt tolower luminosity systems. We anticipate that our study will be useful asa benchmark for studies of galaxies at high redshift. We discuss theobserving, data reduction, and calibration techniques and show that ourphotometry agrees well with previous work in those cases in whichearlier data are available. We present an atlas of images, radialsurface brightness profiles, and color profiles as well as tables ofderived parameters. The atlas and tables of measurements will be madeavailable electronically. We study the correlations of galaxy propertiesdetermined from the galaxy images. Our findings include the following:(1) colors determined within the effective radius correlate better withmorphological type than with MB and (2) 50% of thelow-luminosity galaxies are bluest in their centers.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

Kinematics of the local universe. VII. New 21-cm line measurements of 2112 galaxies
This paper presents 2112 new 21-cm neutral hydrogen line measurementscarried out with the meridian transit Nan\c cay radiotelescope. Amongthese data we give also 213 new radial velocities which complement thoselisted in three previous papers of this series. These new measurements,together with the HI data collected in LEDA, put to 6 700 the number ofgalaxies with 21-cm line width, radial velocity, and apparent diameterin the so-called KLUN sample. Figure 5 and Appendices A and B forcorresponding comments are available in electronic form at thehttp://www.edpsciences.com

Groups of galaxies within 80 Mpc. II - The catalogue of groups and group members
This paper gives a catalog of the groups and associations obtained bymeans of a revised hierarchical algorithm applied to a sample of 4143galaxies with diameters larger than 100 arcsec and redshifts smallerthan 6000 km/s. The 264 groups of galaxies obtained in this way (andwhich contain at least three sample galaxies) are listed, with the looseassociations surrounding them and the individual members of eachaggregate as well; moreover, the location of every entity among 13regions corresponding roughly to superclusters is specified. Finally,1729 galaxies belong to the groups, and 466 to the associations, i.e.,the total fraction of galaxies within the various aggregates amounts to53 percent.

The far-infrared properties of the CfA galaxy sample. I - The catalog
IRAS flux densities are presented for all galaxies in the Center forAstrophysics magnitude-limited sample (mB not greater than 14.5)detected in the IRAS Faint Source Survey (FSS), a total of 1544galaxies. The detection rate in the FSS is slightly larger than in thePSC for the long-wavelength 60- and 100-micron bands, but improves by afactor of about 3 or more for the short wavelength 12- and 25-micronbands. This optically selected sample consists of galaxies which are, onaverage, much less IR-active than galaxies in IR-selected samples. Itpossesses accurate and complete redshift, morphological, and magnitudeinformation, along with observations at other wavelengths.

A survey of galaxy redshifts. IV - The data
The complete list of the best available radial velocities for the 2401galaxies in the merged Zwicky-Nilson catalog brighter than 14.5mz and with b (II) above +40 deg or below -30 deg ispresented. Almost 60 percent of the redshifts are from the CfA surveyand are accurate to typically 35 km/s.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Drache
Right ascension:12h16m55.90s
Declination:+63°24'37.0"
Aparent dimensions:1.738′ × 0.513′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 4238
HYPERLEDA-IPGC 39366

→ Request more catalogs and designations from VizieR