Contingut
Imatges
Carregar la teva Imatge
DSS Images Other Images
Articles Relacionats
Near-infrared surface brightness fluctuations and optical colours of Magellanic star clusters This work continues our efforts to calibrate model surface brightnessfluctuation luminosities for the study of unresolved stellarpopulations, through a comparison with the data of Magellanic Cloud starclusters. We present here the relation between absoluteKs-band fluctuation magnitude and (V-I) integrated colour,using data from the Two-Micron All-Sky Survey (2MASS) and the DeepNear-Infrared Southern Sky Survey (DENIS), and from the literature. Wecompare the star cluster sample with the sample of early-type galaxiesand spiral bulges studied by Liu et al. We find that intermediate-age toold star clusters lie along a linear correlation with the same slope,within the errors, of that defined by the galaxies in the versus (V-I)diagram. While the calibration by Liu et al. was determined in thecolour range 1.05 < (V-IC)0 < 1.25, oursholds in the interval . This implies, according to Bruzual-Charlot andMouhcine-Lançon models, that the star clusters and the lateststar formation bursts in the galaxies and bulges constitute an agesequence. At the same time, a slight offset between the galaxies and thestar clusters [the latter are ~0.7 mag fainter than the former at agiven value of (V-I)], caused by the difference in metallicity ofroughly a factor of 2, confirms that the versus (V-I) plane maycontribute to break the age-metallicity degeneracy in intermediate-ageand old stellar populations. The confrontation between models and galaxydata also suggests that galaxies with Ks fluctuationmagnitudes that are brighter than predicted, given their (V-I) colour,might be explained in part by longer lifetimes of thermally pulsingasymptotic giant branch stars. A preliminary comparison between the H2MASS data of the Magellanic star clusters and the sample of 47early-type galaxies and spiral bulges observed by Jensen et al. throughthe F160WHubble Space Telescope filter leads to the same basicconclusions: galaxies and star clusters lie along correlations with thesame slope, and there is a slight offset between the star cluster sampleand the galaxies, caused by their different metallicities. Magellanicstar clusters are single populations, while galaxies are compositestellar systems; moreover, the objects analysed live in differentenvironments. Therefore, our findings mean that the relationship betweenfluctuation magnitudes in the near-infrared, and (V-I) might be a fairlyrobust tool for the study of stellar population ages and metallicities,could provide additional constraints on star formation histories, andaid in the calibration of near-infrared surface brightness fluctuationsfor cosmological distance measurements.
| Infrared Surface Brightness Fluctuations of Magellanic Star Clusters We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.
| OB stellar associations in the Large Magellanic Cloud: Survey of young stellar systems The method developed by Gouliermis et al. (\cite{Gouliermis00}, PaperI), for the detection and classification of stellar systems in the LMC,was used for the identification of stellar associations and openclusters in the central area of the LMC. This method was applied on thestellar catalog produced from a scanned 1.2 m UK Schmidt Telescope Platein U with a field of view almost 6\fdg5 x 6\fdg5, centered on the Bar ofthis galaxy. The survey of the identified systems is presented herefollowed by the results of the investigation on their spatialdistribution and their structural parameters, as were estimatedaccording to our proposed methodology in Paper I. The detected openclusters and stellar associations show to form large filamentarystructures, which are often connected with the loci of HI shells. Thederived mean size of the stellar associations in this survey was foundto agree with the average size found previously by other authors, forstellar associations in different galaxies. This common size of about 80pc might represent a universal scale for the star formation process,whereas the parameter correlations of the detected loose systems supportthe distinction between open clusters and stellar associations.
| The Optical Gravitational Lensing Experiment. Cepheids in Star Clusters from the Magellanic Clouds We present Cepheids located in the close neighborhood of star clustersfrom the Magellanic Clouds. 204 and 132 such stars were found in the LMCand SMC, respectively. The lists of objects were constructed based oncatalogs of Cepheids and star clusters, recently published by theOGLE-II collaboration. Location of selected Cepheids on the skyindicates that many of them are very likely cluster members. Photometricdata of Cepheids and clusters are available from the OGLE Internetarchive.
| The Optical Gravitational Lensing Experiment. Catalog of Star Clusters from the Large Magellanic Cloud We present the catalog of star clusters found in the area of about 5.8square degree in the central regions of the Large Magellanic Cloud. Itcontains data for 745 clusters. 126 of them are new objects. For eachcluster equatorial coordinates, radius, approximate number of membersand cross-identification are provided. Photometric data for all clusterspresented in the catalog and Atlas consisting of finding charts andcolor-magnitude diagrams are available electronically from the OGLEInternet archive.
| A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.
| The evolution of theV-Kcolours of single stellar populations Models of evolutionary population synthesis of galaxies rely on theproperties of the so-called single stellar populations (SSP). In thispaper, we discuss how the integrated near-infrared colours, andespecially V-K, of SSPs evolve with age and metallicity. Some of theuncertainties associated with the properties of the underlying stellarmodels are thoroughly discussed. Our models include all the relevantstellar evolutionary phases, with particular attention being dedicatedto the asymptotic giant branch (AGB), which plays a fundamental role inthe evolution of the near-infrared part of the spectrum. First, wepresent the effects that different formulations for the mass-loss ratesproduce on the final remnant mass (i.e., on the initial-final massrelation), and hence on the AGB-termination luminosity and the relativecontribution of these stars to the integrated light. The results for theevolution of the V-K colour are very different depending on the choiceof the mass-loss prescription; the same is true also for the B-V colourin the case of low-metallicity SSPs. Secondly, we describe the changesoccurring in the integrated colours at the onset of the AGB and redgiant (RGB) branches. According to the classical formalism for the AGBevolution, the onset of this evolutionary phase is marked by a colourjump to the red, the amplitude of which is shown here to be highlydependent on the metallicity and mass-loss rates adopted in the models.We then consider the effect of the overluminosity with respect to thestandard core mass-luminosity relation that occurs in the most massiveAGB stars. Different simplified formulations for this effect are testedin the models; they cause a smoothing of the colour evolution in the agerange at which the AGB starts to develop, rather than a splitting of thecolour jump into two separate events. On the other hand, we find that atemporary red phase takes place ~1.5x10^8 yr after the RGB develops.Thanks to the transient nature of this feature, the onset of the RGB isprobably not able to cause marked features in the spectral evolution ofgalaxies. We then discuss the possible reasons for the transition of V-Kcolours (from ~1.5 to 3) that takes place in LMC clusters of SWB typeIV. A revision of the ages attributed to the single clusters revealsthat the transition may not be as fast as originally suggested. Thecomparison of the data with the models indicates that the transitionresults mainly from the development of the AGB. A gradual (or delayed)transition of the colours, as predicted by models which include theoverluminosity of the most massive AGB stars, seems to describe the databetter than the sudden colour jump predicted by classical models.
| Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.
| Bar star clusters in the LMC - Formation history from UBV integrated photometry The sample of star clusters in the LMC Bar region with integrated UBVphotometry was enlarged by approximately a factor four, totaling 129objects. The (B-V) histogram gap between blue and red clustersdisappears with this deeper sample. Age groups in terms of equivalentSWB types were derived and their spatial distribution studied. Clustersyounger than t about 200 Myr are not homogeneously distributed throughthe bar. In particular a strong star forming event at t about 100 Myrwas detected in the eastern part of the Bar, consisting of a compactgrouping of seven coeval clusters around NGC 2058 and NGC 2065. Also, 11close pairs and two trios are analyzed, and the colors indicate thatonly four pairs are clearly not coeval.
| Long-period variables in the Large Magellanic Cloud. I - Search and discovery A search for long-period variables has been made in the bar and southernregions of the LMC using a series of I band UKST plates, resulting inthe discovery of 471 Mira variables and 572 SRa variables. By usingmainly automated methods of determining periods and amplitudes ofvariability, corrections for incompleteness have been estimated. TheMiras show a trend toward larger amplitudes and brighter luminositieswith period, both of which should contribute to increase mass-lossrates. The period distribution falls abruptly longward of about 420 daysand shortward of about 140 days, whereas the corresponding limits in thesolar neighborhood are about 450 and about 220 days, suggestingdifferent histories of star formation in the LMC and the Galaxy. Inparticular, there appear to be relatively more old stars in the LMC.
| Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.
| Photometric studies of composite stellar systems. V - Infrared photometry of star clusters in the Magellanic clouds Abstract image available at:http://adsabs.harvard.edu/abs/1983ApJ...266..105P
| A Catalogue of Clusters in The LMC Not Available
|
Enviar un nou article
Enllaços Relacionats
- - No s'ha trobat enllaços -
Enviar un nou enllaç
Membre dels grups següents:
|
Dades d'Observació i Astrometria
Catàlegs i designacions:
|